Long-term trends of ultrafine and fine particle number concentrations in New York State: Apportioning between emissions and dispersion.

Environ Pollut

Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA; Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY, 13699, USA.

Published: October 2022

AI Article Synopsis

  • Efforts to improve air quality in the U.S. have used ambient particulate matter (PM) concentrations to gauge the effectiveness of environmental policies, affected by both emissions and weather conditions.
  • Recent advancements in "dispersion normalization" help clarify how atmospheric conditions influence PM measurements, leading to more accurate assessments of PM sources.
  • Long-term analysis of PM data from Rochester, NY, indicates changes in particle concentrations over time, suggesting that a cleaner atmosphere may be contributing to an increase in certain types of particles, posing new challenges for future research on PM sources.

Article Abstract

In the past several decades, a variety of efforts have been made in the United States to improve air quality, and ambient particulate matter (PM) concentrations have been used as a metric to evaluate the efficacy of environmental policies. However, ambient PM concentrations result from a combination of source emission rates and meteorological conditions, which also change over time. Dispersion normalization was recently developed to reduce the influence of atmospheric dispersion and proved an effective approach that enhanced diel/seasonal patterns and thus provides improved source apportionment results for speciated PM mass and particle number concentration (PNC) measurements. In this work, dispersion normalization was incorporated in long-term trend analysis of 11-500 nm PNCs derived from particle number size distributions (PNSDs) measured in Rochester, NY from 2005 to 2019. Before dispersion normalization, a consistent reduction was observed across the measured size range during 2005-2012, while after 2012, the decreasing trends slowed down for accumulation mode PNCs (100-500 nm) and reversed for ultrafine particles (UFPs, 11-100 nm). Through dispersion normalization, we showed that these changes were driven by both emission rates and dispersion. Thus, it is important for future studies to assess the effects of the changing meteorological conditions when evaluating policy effectiveness on controlling PM concentrations. Before and after dispersion normalization, an evident increase in nucleation mode particles was observed during 2015-2019. This increase was possibly enabled by a cleaner atmosphere and will pose new challenges for future source apportionment and accountability studies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2022.119797DOI Listing

Publication Analysis

Top Keywords

dispersion normalization
20
particle number
12
dispersion
8
emission rates
8
meteorological conditions
8
source apportionment
8
normalization
5
long-term trends
4
trends ultrafine
4
ultrafine fine
4

Similar Publications

Light-driven molecular rotary motors are nanometric machines able to convert light into unidirectional motions. Several types of molecular motors have been developed to better respond to light stimuli, opening new avenues for developing smart materials ranging from nanomedicine to robotics. They have great importance in the scientific research across various disciplines, but a detailed comprehension of the underlying ultrafast photophysics immediately after photo-excitation, that is, Franck-Condon region characterization, is not fully achieved yet.

View Article and Find Full Text PDF

The use of nanozymes for electrochemical detection in the food industry is an intriguing area of research. In this study, we synthesized a laccase mimicking the MnO@CeO nanozyme using a simple hydrothermal method, which was characterized by modern analytical methods, such as transmission electron microscope (TEM), X-ray diffraction (XRD), and energy dispersive X-ray spectroscopy (EDX), etc. We found that the addition of MnO significantly increased the laccase-like activity by 300% compared to CeO nanorods.

View Article and Find Full Text PDF

Single-walled carbon nanotubes (SWNTs) exhibit distinct electronic properties, categorized as metallic or semiconducting, determined by their chirality. The precise and selective separation of these electronic types is pivotal for advancing nanotechnology applications. While conventional gel chromatography has been widely employed for large-scale separations, its limitations in addressing microscale dynamics and electronic-type differentiation have persisted.

View Article and Find Full Text PDF

Pathovar Infection Reveals Different Defense Mechanisms in Two Sweet Cherry Cultivars.

Plants (Basel)

December 2024

Facultad de Ciencias Agronómicas, Departamento de Sanidad Vegetal, Universidad de Chile, La Pintana 8820808, Chile.

pv. is the main causal agent of bacterial canker in sweet cherry in Chile, causing significant economic losses. Cultivars exhibit diverse susceptibility in the field and the molecular mechanisms underlying the differential responses remain unclear.

View Article and Find Full Text PDF

Rationale: Mass vaccination, low cost of immunoglobulins, and new drugs led to the emergence of new, unusual patterns of hepatitis B serum markers. This study reported a rare case of hepatitis B with all 5 positive serum markers, including HBsAg, HBsAb, HBeAg, HBeAb, and HBcAb.

Patient Concerns: A 30-year-old female patient was admitted due to abnormal liver function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!