Intracellular Trafficking Mechanisms that Regulate Repulsive Axon Guidance.

Neuroscience

Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, United States. Electronic address:

Published: January 2023

Friedrich Bonhoeffer made seminal contributions to the study of axon guidance in the developing nervous system. His discoveries of key cellular and molecular mechanisms that dictate wiring specificity laid the foundation for countless investigators who have followed in his footsteps. Perhaps his most significant contribution was the cloning and characterization of members of the conserved ephrin family of repulsive axon guidance cues. In this review, we highlight the major contributions that Bonhoeffer and his colleagues made to the field of axon guidance, and discuss ongoing investigations into the diverse array of mechanisms that ensure that axon repulsion is precisely regulated to allow for accurate pathfinding. Specifically, we focus our discussion on the post-translational regulation of two major families of repulsive axon guidance factors: ephrin ligands and their Eph receptors, and slit ligands and their Roundabout (Robo) receptors. We will give special emphasis to the ways in which regulated endocytic trafficking events allow navigating axons to adjust their responses to repellant signals and how these trafficking events are intimately related to receptor signaling. By highlighting parallels and differences between the regulation of these two important repulsive axon guidance pathways, we hope to identify key outstanding questions for future investigation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9839465PMC
http://dx.doi.org/10.1016/j.neuroscience.2022.07.012DOI Listing

Publication Analysis

Top Keywords

axon guidance
24
repulsive axon
16
trafficking events
8
axon
7
guidance
6
intracellular trafficking
4
trafficking mechanisms
4
mechanisms regulate
4
repulsive
4
regulate repulsive
4

Similar Publications

Developmental and molecular effects of pure-tone sine wave exposure on early zebrafish embryo development: Implications for reproductive health.

Ecotoxicol Environ Saf

January 2025

Key laboratory of Birth Defects and Related Disease of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China; SCU-CUHK Joint Laboratory for Reproductive Medicine, Zebrafish Research Platform, West China Second University Hospital, Children's Medicine Key Laboratory of Sichuan Province, Sichuan University/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610000, PR China. Electronic address:

Noise pollution has become a significant concern for human health, yet its effects on early embryonic development remain underexplored. Specifically, data on the impact of sine wave noise on newly fertilized embryos is limited. This study aimed to address this gap by using zebrafish embryos at the 1-cell stage as a model to assess the toxicity of sine waves, following OECD Test No.

View Article and Find Full Text PDF

Recent advancements in tissue engineering have promoted the development of nerve guidance conduits (NGCs) that significantly enhance peripheral nerve injury treatment, improving outcomes and recovery rates. However, utilising tailored biomimetic three-dimensional (3D) topological porous structures combined with multiple bio-effect neurotrophic factors to create environments similar to neural tissues, regulate local immune responses, and develop a supportive microenvironment to promote peripheral nerve regeneration and repair poses significant challenges. Herein, a biomimetic extracellular matrix (ECM) NGC featuring an interconnected 3D porous network and sustained delivery of insulin-like growth factor-1 (IGF-1) is designed using multi-functional gelatine microcapsules (GMs).

View Article and Find Full Text PDF

Electric field stimulation directs target-specific axon regeneration and partial restoration of vision after optic nerve crush injury.

PLoS One

January 2025

Department of Ophthalmology, Keck School of Medicine, USC Roski Eye Institute, University of Southern California, Los Angeles, California, United States of America.

Failure of central nervous system (CNS) axons to regenerate after injury results in permanent disability. Several molecular neuro-protective and neuro-regenerative strategies have been proposed as potential treatments but do not provide the directional cues needed to direct target-specific axon regeneration. Here, we demonstrate that applying an external guidance cue in the form of electric field stimulation to adult rats after optic nerve crush injury was effective at directing long-distance, target-specific retinal ganglion cell (RGC) axon regeneration to native targets in the diencephalon.

View Article and Find Full Text PDF

Signal transduction downstream of axon guidance molecules is essential to steer developing axons. Second messengers including cAMP are key molecules shared by a multitude of signaling pathways and are required for a wide range of cellular processes including axon pathfinding. Yet, how these signaling molecules achieve specificity for each of their downstream pathways remains elusive.

View Article and Find Full Text PDF

Targeting Perineural Invasion in Pancreatic Cancer.

Cancers (Basel)

December 2024

Department of Medical Oncology, Lab of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1007 MB Amsterdam, The Netherlands.

Pancreatic cancer is an aggressive tumor with dismal prognosis. Neural invasion is one of the pathological hallmarks of pancreatic cancer. Peripheral nerves can modulate the phenotype and behavior of the malignant cells, as well as of different components of the tumor microenvironment, and thus affect tumor growth and metastasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!