Silicon-rich lye (SRL), a byproduct generated from pre-treatment of coal-based solid waste (CSW), was considered as a preponderant silicon source to prepare hierarchically nanostructured calcium silicate hydrate (C-S-H). Through the novel mild-causticization synthesis strategy, C-S-H was prepared under optimal caustic process conditions at time of 3 h, temperature of 80 °C, Ca/Si of 1.25:1, and active CaO to obtain a conversion rate of Si up to 97.33 % during the high-value utilization of SRL. The synthesized C-S-H possesses abundant mesoporous structure and massive exchangeable active sites, whose formation is advanced through an appropriate elevation regulation of caustic temperature and time. The silicate chain depolymerization occurs to C-S-H prepared in the highly alkaline system at higher caustic temperature, longer caustic period, especially at existence of massive sodium ions, but it presents higher polymerization degree at more aluminum co-existing. The adsorption capacity up to 119.27 mg/g for C-S-H presents a valid removal performance toward phosphorus in the wastewater than massive present reports. The removal mechanism of phosphorus can be identified as the surface chemisorption and formation of calcium phosphate co-precipitation. This study can provide considerable and potential guidance to the coordinated disposal between industrial solid wastes and wastewater purification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.157431 | DOI Listing |
Sci Total Environ
November 2022
Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
Silicon-rich lye (SRL), a byproduct generated from pre-treatment of coal-based solid waste (CSW), was considered as a preponderant silicon source to prepare hierarchically nanostructured calcium silicate hydrate (C-S-H). Through the novel mild-causticization synthesis strategy, C-S-H was prepared under optimal caustic process conditions at time of 3 h, temperature of 80 °C, Ca/Si of 1.25:1, and active CaO to obtain a conversion rate of Si up to 97.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!