Landfills have high potency as renewable energy sources by producing biogas from organic waste degradation. Landfills biogas (LFG) can be used for power plant purposes instead of allowing it to flare to the atmosphere which contributes to the global warming. The aim of this work was to introduce and examine an optimization model for maximizing the power generation of Al Ghabawi landfill in Amman city, Jordan. The optimization process focused on studying the effect of several operating parameters within the landfill power plant. To achieve this goal, a combustion model had been built and validated against a set of historical real data obtained from the landfill operator. In addition to that, an Artificial Neural Network (ANN) model had been built to perform a multi-objective optimization to obtain the optimal power generation conditions for Al Ghabawi landfill. The combustion model along with the ANN model aim to estimate the best engine operating conditions based on the actual daily data of the landfill. The engine operating parameters includes the intake pressure and temperature, the ignition time and the equivalence ratio. The results of the study indicate that the current operating parameters can be optimized to maximize the gensets power generation. Based on the daily data of the produced LFG, the optimal operating conditions for the landfill are 2.32 bar for the intake pressure, 303 K for the intake temperature, 0.9-1.0 for the equiveillance ratio and for the ignition time it is 13 degrees before the top dead center (BTDC). These optimized operating parameters can maximize the landfill power generation by at least 1 MW for each genset.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2022.07.011DOI Listing

Publication Analysis

Top Keywords

power generation
16
operating parameters
16
ghabawi landfill
12
landfill
9
artificial neural
8
power plant
8
landfill power
8
combustion model
8
model built
8
data landfill
8

Similar Publications

Regressions on quantum neural networks at maximal expressivity.

Sci Rep

December 2024

Departamento de Física, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911, Leganés, Spain.

Considering a universal deep neural network organized as a series of nested qubit rotations, accomplished by adjustable data re-uploads we analyze its expressivity. This ability to approximate continuous functions in regression tasks is quantified making use of a partial Fourier decomposition of the generated output and systematically benchmarked with the aid of a teacher-student scheme. While the maximal expressive power increases with the depth of the network and the number of qubits, it is fundamentally bounded by the data encoding mechanism.

View Article and Find Full Text PDF

Unbalanced power systems cause transformers and generators to overheat, system losses to climb, and protective devices to trigger. An optimization-based control technique for distributed generators (DG) balances demand and improves power quality in three imbalanced distribution systems with 10, 13, and 37 nodes. Each system phase has its own DG.

View Article and Find Full Text PDF

All-polymer piezo-ionic-electric electronics.

Nat Commun

December 2024

Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.

Piezoelectric electronics possess great potential in flexible sensing and energy harvesting applications. However, they suffer from low electromechanical performance in all-organic piezoelectric systems due to the disordered and weakly-polarized interfaces. Here, we demonstrated an all-polymer piezo-ionic-electric electronics with PVDF/Nafion/PVDF (polyvinylidene difluoride) sandwich structure and regularized ion-electron interfaces.

View Article and Find Full Text PDF

Glioblastoma is immunologically "cold" and resistant to single-agent immune-checkpoint inhibitors (ICI). Our previous study of neoadjuvant pembrolizumab in surgically-accessible recurrent glioblastoma identified a molecular signature of response to ICI and suggested that neoadjuvant pembrolizumab may improve survival. To increase the power of this observation, we enrolled an additional 25 patients with a primary endpoint of evaluating the cell cycle gene signature associated with neoadjuvant pembrolizumab and performed bulk-RNA seq on resected tumor tissue (NCT02852655).

View Article and Find Full Text PDF

Toward Green Liquid Nitrogen Fertilizer Synthesis: Plasma-Driven Nitrogen Oxidation and Partial Electrocatalytic Reduction.

Adv Sci (Weinh)

December 2024

State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.

Liquid fertilizers, particularly when integrated with precision irrigation systems, offer a more efficient and sustainable alternative to traditional solid nitrogen fertilizers. The industrial production of ammonium nitrate (NHNO) is environmentally detrimental due to its reliance on fossil fuels. This study introduces an innovative air-to-NOx-to-NHNO pathway for synthesizing liquid nitrogen fertilizer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!