Survival Strategies and Metabolic Interactions between Ruminococcus gauvreauii and , Isolated from Human Bile.

Microbiol Spectr

Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute of Asturias (IPLA)-Spanish National Research Council (CSIC), Villaviciosa-Asturias, Spain.

Published: August 2022

Little is known about the bacteria that reside in the human gallbladder and the mechanisms that allow them to survive within this harsh environment. Here we describe interactions between two strains from a human bile sample, one Ruminococcus gauvreauii (IPLA60001), belonging to the family, and the other, designated as Ruminococcoides bili (IPLA60002; DSM 110008) most closely related to Ruminococcus bromii within the family Ruminococcaceae. We provide evidence for bile salt resistance and sporulation for these new strains. Both differed markedly in their carbohydrate metabolism. The R. bili strain mainly metabolized resistant starches to form formate, lactate and acetate. R. gauvreauii mainly metabolized sugar alcohols, including inositol and also utilized formate to generate acetate employing the Wood Ljungdahl pathway. Amino acid and vitamin biosynthesis genomic profiles also differed markedly between the two isolates, likely contributing to their synergistic interactions, as revealed by transcriptomic analysis of cocultures. Transcriptome analysis also revealed that R. gauvreauii IPLA60001 is able to grow using the end-products of starch metabolism formed by the R. bili strain such as formate, and potentially other compounds (such as ethanolamine and inositol) possibly provided by the autolytic behavior of R. bili. Unique insights into metabolic interaction between two isolates; Ruminococcus gauvreauii IPLA60001 and Ruminococcoides bili IPLA60002, from the human gallbladder, are presented here. The R. bili strain metabolized resistant starches while R. gauvreauii failed to do so but grew well on sugar alcohols. Transcriptomic analysis of cocultures of these strains, provides new data on the physiology and ecology of two bacteria from human bile, with a particular focus on cross-feeding mechanisms. Both biliary strains displayed marked resistance to bile and possess many efflux transporters, potentially involved in bile export. However, they differ markedly in their amino acid catabolism and vitamin synthesis capabilities, a feature that is therefore likely to contribute to the strong synergistic interactions between these strains. This is therefore the first study that provides evidence for syntrophic metabolic cooperation between bacterial strains isolated from human bile.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9431564PMC
http://dx.doi.org/10.1128/spectrum.02776-21DOI Listing

Publication Analysis

Top Keywords

human bile
16
ruminococcus gauvreauii
12
gauvreauii ipla60001
12
bili strain
12
isolated human
8
human gallbladder
8
interactions strains
8
ruminococcoides bili
8
bili ipla60002
8
differed markedly
8

Similar Publications

The Role of Sulfatides in Liver Health and Disease.

Front Biosci (Landmark Ed)

January 2025

Department of Surgery, School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands.

Sulfatides or 3-O-sulfogalactosylceramide are negatively charged sulfated glycosphingolipids abundant in the brain and kidneys and play crucial roles in nerve impulse conduction and urinary pH regulation. Sulfatides are present in the liver, specifically in the biliary tract. Sulfatides are self-lipid antigens presented by cholangiocytes to activate cluster of differentiation 1d (CD1d)-restricted type II natural killer T (NKT) cells.

View Article and Find Full Text PDF

Intrahepatic cholestasis of pregnancy (ICP) is associated with adverse perinatal outcomes, yet the correlation between ICP and the neutrophil-to-lymphocyte ratio (NLR) remains unclear. This study aims to investigate the diagnostic value of NLR in ICP. In this retrospective case-control study, 113 patients with ICP treated in Beilun District People's Hospital from January 2020 to December 2022 were recruited and categorized as the ICP group, and 209 healthy pregnant women treated during the same period were selected as the control group.

View Article and Find Full Text PDF

Nutritional Status and Nutritional Support in Patients with Gastrointestinal Diseases.

Nutrients

January 2025

Department of Digestive Tract Surgery, Medical University of Silesia, Medyków 14 St., 40-752 Katowice, Poland.

Gastrointestinal diseases include a wide spectrum of functional and structural disorders of the alimentary system, involving hepatic, bile duct, and pancreatic diseases [...

View Article and Find Full Text PDF

The integrity of esophageal epithelial cells in patients with gastroesophageal reflux disease (GERD) or GERD-like symptoms is the first mechanism of protection to decrease the sensitivity to gastric reflux and heartburn symptoms. We investigated the protective effects of Poliprotect (PPRO), a CE-marked medical device, on esophageal epithelial integrity using in vitro and ex vivo models. In vitro, the protective effects of PPRO were tested on Caco-2 cells.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor prognosis, primarily due to its immunosuppressive tumor microenvironment (TME), which contributes to treatment resistance. Recent research shows that the microbiome, including microbial communities in the oral cavity, gut, bile duct, and intratumoral environments, plays a key role in PDAC development, with microbial imbalances (dysbiosis) promoting inflammation, cancer progression, therapy resistance, and treatment side effects. Microbial metabolites can also affect immune cells, especially natural killer (NK) cells, which are vital for tumor surveillance, therapy response and treatment-related side effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!