9,10-Phenanthrenequinone (9,10-PQ) is a toxicant in diesel exhaust particles and airborne particulate matter ≤2.5 μm in diameter. It is an efficient electron acceptor that readily reacts with dithiol compounds , resulting in the oxidation of thiol groups and concomitant generation of reactive oxygen species (ROS). However, it remains to be elucidated whether 9,10-PQ interacts with proximal protein dithiols. In the present study, we used thioredoxin 1 (Trx1) as a model of proteins with reactive proximal cysteines and examined whether it reacts with 9,10-PQ in cells and tissues, thereby affecting its catalytic activity and thiol status. Intratracheal injection of 9,10-PQ into mice resulted in protein oxidation and diminished Trx activity in the lungs. Using recombinant wild-type and C32S/C35S Trx1, we found that Cys32 and Cys35 selectively serve as electron donor sites for redox reactions with 9,10-PQ that lead to substantial inhibition of Trx activity. Addition of dithiothreitol restored the Trx activity inhibited by 9,10-PQ. Exposure of cultured cells to 9,10-PQ caused intracellular reactive oxygen species generation that led to protein oxidation, Trx1 dimerization, p38 phosphorylation, and apoptotic cell death. Overexpression of Trx1 blocked these 9,10-PQ-mediated events. These results suggest that the interaction of the reactive cysteines of Trx1 with 9,10-PQ causes oxidative stress, leading to disruption of redox homeostasis.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.chemrestox.2c00174DOI Listing

Publication Analysis

Top Keywords

trx activity
12
redox homeostasis
8
reactive cysteines
8
electron acceptor
8
910-pq
8
reactive oxygen
8
oxygen species
8
protein oxidation
8
reactive
5
trx1
5

Similar Publications

Beyond Redox Regulation: Novel Roles of TXNIP in the Pathogenesis and Therapeutic Targeting of Kidney Disease.

Am J Pathol

January 2025

Division of Nephrology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, USA. Electronic address:

Cellular stress conditions, such as oxidative and endoplasmic reticulum (ER) stresses contribute to development of various kidney diseases. Oxidative stress is prompted by reactive oxygen species (ROS) accumulation and delicately mitigated by glutathione and thioredoxin (Trx) antioxidant systems. Initially identified as a Trx-binding partner, thioredoxin interacting protein (TXNIP) is significantly upregulated and activated by oxidative and ER stresses.

View Article and Find Full Text PDF

The lack of effective protection against UVB radiation, that severely disrupts the metabolism of keratinocytes, underlines the search for bioactive compounds that would provide effective protection without causing side effects. Therefore, the aim of the study has been to assess the effect of two compounds, that are different in terms of structure and properties: 3-O-ethyl ascorbic acid-EAA (a stable derivative of vitamin C) and cannabigerol-CBG, used separately or concurrently, on the metabolism of keratinocytes previously exposed to UVB. The obtained results indicate diverse, yet mutually reinforcing localization of the tested compounds, both within the membrane structures and cytosol.

View Article and Find Full Text PDF

The Trx-Prx redox pathway and PGR5/PGRL1-dependent cyclic electron transfer play key regulatory roles in poplar drought stress.

Tree Physiol

January 2025

Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.

Understanding drought resistance mechanisms is crucial for breeding poplar species suited to arid and semi-arid regions. This study explored the drought responses of three newly developed 'Zhongxiong' series poplars using integrated transcriptomic and physiological analyses. Under drought stress, poplar leaves showed significant changes in differentially expressed genes (DEGs) linked to photosynthesis-related pathways, including photosynthesis-antenna proteins and carbon fixation, indicating impaired photosynthetic function and carbon assimilation.

View Article and Find Full Text PDF

Cadmium-Induced Oxidative Damage and the Expression and Function of Mitochondrial Thioredoxin in .

Int J Mol Sci

December 2024

Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China.

is a unique aquatic invertebrate native to China, whose habitat is highly susceptible to environmental pollution, making it an ideal model for studying aquatic toxicology. Mitochondrial thioredoxin (Trx2), a key component of the Trx system, plays an essential role in scavenging reactive oxygen species (ROS), regulating mitochondrial membrane potential, and preventing ROS-induced oxidative stress and apoptosis. This study investigated the toxicity of cadmium (Cd) on and the role of Trx2 (Trx2) in Cd detoxification.

View Article and Find Full Text PDF

Adoptive T cell therapy targeting an inducible and broadly shared product of aberrant mRNA translation.

Immunity

January 2025

Division of Oncogenomics, Oncode institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands; Erasmus MC, Department of Genetics, Rotterdam University, Rotterdam, the Netherlands. Electronic address:

Prolonged exposure to interferon-gamma (IFNγ) and the associated increased expression of the enzyme indoleamine 2,3-dioxygenase 1 (IDO1) create an intracellular shortage of tryptophan in the cancer cells, which stimulates ribosomal frameshifting and tryptophan to phenylalanine (W>F) codon reassignments during protein synthesis. Here, we investigated whether such neoepitopes can be useful targets of adoptive T cell therapy. Immunopeptidomic analyses uncovered hundreds of W>F neoepitopes mainly presented by the HLA-A24:02 allele.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!