Staphylococcus aureus is a major human and animal pathogen, colonizing diverse ecological niches within its hosts. Predicting whether an isolate will infect a specific host and its subsequent clinical fate remains unknown. In this study, we investigated the S. aureus pangenome using a curated set of 356 strains, spanning a wide range of hosts, origins, and clinical display and antibiotic resistance profiles. We used genome-wide association study (GWAS) and random forest (RF) algorithms to discriminate strains based on their origins and clinical sources. Here, we show that the presence of and can discriminate strains based on their host specificity, while other genes such as are often associated with virulent outcomes. Both GWAS and RF indicated the importance of intergenic regions (IGRs) and coding DNA sequence (CDS) but not sRNAs in forecasting an outcome. Additional transcriptomic analyses performed on the most prevalent clonal complex 8 (CC8) clonal types, in media mimicking nasal colonization or bacteremia, indicated three RNAs as potential RNA markers to forecast infection, followed by 30 others that could serve as infection severity predictors. Our report shows that genetic association and transcriptomics are complementary approaches that will be combined in a single analytical framework to improve our understanding of bacterial pathogenesis and ultimately identify potential predictive molecular markers. Predicting the outcome of bacterial colonization and infections, based on extensive genomic and transcriptomic data from a given pathogen, would be of substantial help for clinicians in treating and curing patients. In this report, genome-wide association studies and random forest algorithms have defined gene combinations that differentiate human from animal strains, colonization from diseases, and nonsevere from severe diseases, while it revealed the importance of IGRs and CDS, but not small RNAs (sRNAs), in anticipating an outcome. In addition, transcriptomic analyses performed on the most prevalent clonal types, in media mimicking either nasal colonization or bacteremia, revealed significant differences and therefore potent RNA markers. Overall, the use of both genomic and transcriptomic data in a single analytical framework can enhance our understanding of bacterial pathogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9426533PMC
http://dx.doi.org/10.1128/msystems.00378-22DOI Listing

Publication Analysis

Top Keywords

genome-wide association
12
staphylococcus aureus
8
association studies
8
human animal
8
origins clinical
8
random forest
8
forest algorithms
8
discriminate strains
8
strains based
8
transcriptomic analyses
8

Similar Publications

Background: Glucagon-like peptide-1 receptor agonists (GLP1RAs) are widely used in manageing type 2 diabetes mellitus and weight control. Their potential in treating ageing-related diseases has been gaining attention in recent years. However, the long-term effects of GLP1RAs on these diseases have yet to be fully revealed.

View Article and Find Full Text PDF

Background: Antibiotics have recently been suggested to increase the risk of colorectal cancer. Here, we aimed to investigate the association of frequent antibiotic use and genetic susceptibility with the increased risk of the development of colorectal cancer. Therefore, a genome-wide association study was conducted in colorectal cancer patients with frequent antibiotic use and controls to identify potential chromosomal regions that could indicate an increased risk of colorectal cancer associated with antibiotic use.

View Article and Find Full Text PDF

Circulating glycine levels have been associated with reduced risk of coronary artery disease (CAD) in humans but these associations have not been observed in all studies. We evaluated whether the relationship between glycine levels and atherosclerosis was causal using genetic analyses in humans and feeding studies in mice. Serum glycine levels were evaluated for association with risk of CAD in the UK Biobank.

View Article and Find Full Text PDF

Genome-Wide Identification and Functional Characterization of Gene Family Reveal Its Involvement in Response to Stress in Cotton.

Int J Mol Sci

January 2025

Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang 050000, China.

SKP1 constitutes the Skp1-Cullin-F-box ubiquitin E3 ligase (SCF), which plays a role in plant growth and development and biotic and abiotic stress in ubiquitination. However, the response of the gene family to abiotic and biotic stresses in cotton has not been well characterized. In this study, a total of 72 genes with the conserved domain of SKP1 were identified in four Gossypium species.

View Article and Find Full Text PDF

Systemic lupus erythematosus (SLE) is a complex autoimmune disorder characterized by widespread inflammation and autoantibody production. Its development and progression involve genetic, epigenetic, and environmental factors. Although genome-wide association studies (GWAS) have repeatedly identified a susceptibility signal at 16p13, its fine-scale source and its functional and mechanistic role in SLE remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!