A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evolutionary Instability of Collateral Susceptibility Networks in Ciprofloxacin-Resistant Clinical Escherichia coli Strains. | LitMetric

Collateral sensitivity and resistance occur when resistance development toward one antimicrobial either potentiates or deteriorates the effect of others. Previous reports on collateral effects on susceptibility focus on newly acquired resistance determinants and propose that novel treatment guidelines informed by collateral networks may reduce the evolution, selection, and spread of antimicrobial resistance. In this study, we investigate the evolutionary stability of collateral networks in five ciprofloxacin-resistant, clinical Escherichia coli strains. After 300 generations of experimental evolution without antimicrobials, we show complete fitness restoration in four of five genetic backgrounds and demonstrate evolutionary instability in collateral networks of newly acquired resistance determinants. We show that compensatory mutations reducing efflux expression are the main drivers destabilizing initial collateral networks and identify as a putative target for compensatory evolution. Our results add another layer of complexity to future predictions and clinical application of collateral networks. Antimicrobial resistance occurs due to genetic alterations that affect different processes in bacteria. Thus, developing resistance toward one antimicrobial drug may also alter the response toward others (collateral effects). Understanding the mechanisms of such collateral effects may provide clinicians with a framework for informed antimicrobial treatment strategies, limiting the emergence of antimicrobial resistance. However, for clinical implementation, it is important that the collateral effects of resistance development are repeatable and temporarily stable. Here, we show that collateral effects caused by resistance development toward ciprofloxacin in clinical Escherichia coli strains are not temporarily stable because of compensatory mutations restoring the fitness burden of the initial resistance mutations. Consequently, this instability is complicating the general applicability and clinical implementation of collateral effects into treatment strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9426462PMC
http://dx.doi.org/10.1128/mbio.00441-22DOI Listing

Publication Analysis

Top Keywords

collateral effects
24
collateral networks
20
collateral
13
clinical escherichia
12
escherichia coli
12
coli strains
12
resistance development
12
antimicrobial resistance
12
resistance
11
evolutionary instability
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!