We report the interfacial structures and chemical environments of ionic liquid films as a function of dilution with molecular solvents and over a range of film thicknesses (a few micrometers). Data from spectroscopic ellipsometry and infrared spectroscopy measurements show differences between films comprised of neat ionic liquids, as well as films comprised of ionic liquids diluted with two molecular solvents (water and acetonitrile). While the water-diluted IL films follow thickness trends predicted by the Landau-Levich model, neat IL and IL/MeCN films deviate significantly from predicted behaviors. Specifically, these film thicknesses are far greater than the predicted values, suggesting enhanced intermolecular interactions or other non-Newtonian behaviors not captured by the theory. We correlate film thicknesses with trends in the infrared intensity profiles across film thicknesses and IL-solvent dilution conditions and interpret the changes from expected behaviors as varying amounts of the film volume existing in isotropic (bulk) vs anisotropic (interfacial) states. The hydrogen bonding network of water-diluted ionic liquids is implicated in the agreement of this system with the Landau-Levich model's thickness predictions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10111422 | PMC |
http://dx.doi.org/10.1021/acs.langmuir.2c01258 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!