Background: Artificial intelligence (AI) has affected our day-to-day in a great extent. Healthcare industry is one of the mainstream fields among those and produced a noticeable change in treatment and education. Medical students must comprehend well why AI technologies mediate and frame their decisions on medical issues. Formalizing of instruction on AI concepts can facilitate learners to grasp AI outcomes in association with their sensory perceptions and thinking in the dynamic and ambiguous reality of daily medical practice. The purpose of this study is to provide consensus on the competencies required by medical graduates to be ready for artificial intelligence technologies and possible applications in medicine and reporting the results.

Materials And Methods: A three-round e-Delphi survey was conducted between February 2020 and November 2020. The Delphi panel accorporated experts from different backgrounds; (i) healthcare professionals/ academicians; (ii) computer and data science professionals/ academics; (iii) law and ethics professionals/ academics; and (iv) medical students. Round 1 in the Delphi survey began with exploratory open-ended questions. Responses received in the first round evaluated and refined to a 27-item questionnaire which then sent to the experts to be rated using a 7-point Likert type scale (1: Strongly Disagree-7: Strongly Agree). Similar to the second round, the participants repeated their assessments in the third round by using the second-round analysis. The agreement level and strength of the consensus was decided based on third phase results. Median scores was used to calculate the agreement level and the interquartile range (IQR) was used for determining the strength of the consensus.

Results: Among 128 invitees, a total of 94 agreed to become members of the expert panel. Of them 75 (79.8%) completed the Round 1 questionnaire, 69/75 (92.0%) completed the Round 2 and 60/69 (87.0%) responded to the Round 3. There was a strong agreement on the 23 items and weak agreement on the 4 items.

Conclusions: This study has provided a consensus list of the competencies required by the medical graduates to be ready for AI implications that would bring new perspectives to medical education curricula. The unique feature of the current research is providing a guiding role in integrating AI into curriculum processes, syllabus content and training of medical students.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9302857PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0271872PLOS

Publication Analysis

Top Keywords

artificial intelligence
12
medical students
12
medical
9
medical education
8
competencies required
8
required medical
8
medical graduates
8
graduates ready
8
professionals/ academics
8
agreement level
8

Similar Publications

Background: The escalating global scarcity of skilled health care professionals is a critical concern, further exacerbated by rising stress levels and clinician burnout rates. Artificial intelligence (AI) has surfaced as a potential resource to alleviate these challenges. Nevertheless, it is not taken for granted that AI will inevitably augment human performance, as ill-designed systems may inadvertently impose new burdens on health care workers, and implementation may be challenging.

View Article and Find Full Text PDF

Eutrophication is one of the most relevant concerns due to the risk to water supply and food security. Nitrogen and phosphorus chemical species concentrations determined the risk and magnitude of eutrophication. These analyses are even more relevant in basins with intensive agriculture due to agrochemical discharges.

View Article and Find Full Text PDF

Online Mental Health Communities (OMHCs), such as Reddit, have witnessed a surge in popularity as go-to platforms for seeking information and support in managing mental health needs. Platforms like Reddit offer immediate interactions with peers, granting users a vital space for seeking mental health assistance. However, the largely unregulated nature of these platforms introduces intricate challenges for both users and society at large.

View Article and Find Full Text PDF

The aim of this study is to address the limitations of convolutional networks in recognizing modulation patterns. These networks are unable to utilize temporal information effectively for feature extraction and modulation pattern recognition, resulting in inefficient modulation pattern recognition. To address this issue, a signal modulation recognition method based on a two-way interactive temporal attention network algorithm has been developed.

View Article and Find Full Text PDF

Soil spectroscopy is a widely used method for estimating soil properties that are important to environmental and agricultural monitoring. However, a bottleneck to its more widespread adoption is the need for establishing large reference datasets for training machine learning (ML) models, which are called soil spectral libraries (SSLs). Similarly, the prediction capacity of new samples is also subject to the number and diversity of soil types and conditions represented in the SSLs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!