Background: Leadless pacemakers (LPs) can mitigate conventional pacemaker complications related to the transvenous leads and subcutaneous pocket surrounding the pulse generator. Although single-chamber leadless pacing has been established, multichamber pacing requires wireless bidirectional communication across multiple LPs to maintain synchrony. This preclinical study demonstrates the chronic performance of implant-to-implant (i2i) communication that achieves synchronous, dual-chamber pacing with 2 LPs.
Methods: The i2i communication modality employs subthreshold electrical signals conducted between implanted LPs through the blood and myocardial tissue on a beat-by-beat basis. Right atrial and right ventricular LPs were implanted in 9 ovine subjects. The i2i transmission performance was evaluated 13 weeks after implant.
Results: Right atrial and right ventricular LPs were implanted successfully and without complication in 9 ovine subjects. A total of 8715±457 right atrial-to-right ventricular and right ventricular-to-right atrial transmissions were sent per hour, with a success rate of 99.2±0.9%. Of periods with i2i communication failure when DDD pacing was not possible, 97.3±1.8% were resolved within 6 s.
Conclusions: For the first time, synchronized, dual-chamber pacing has been demonstrated in a chronic preclinical feasibility study by 2 leadless pacemakers using beat-to-beat, wireless communication, achieving a success rate of 99.2%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/CIRCEP.122.010909 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!