Temperature effects on the disappearance and reappearance of corneal-endothelium primary cilia.

Jpn J Ophthalmol

Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji-agaru, Kawaramachi-dori, Kamigyo-ku, Kyoto, 602-0841, Japan.

Published: September 2022

Introduction: To elucidate the specific functions of the primary cilia in corneal endothelial cells (CECs) by investigating the histological changes of corneal endothelium exposed at low temperature.

Study Design: Experimental study.

Methods: This study involved corneas freshly obtained from Japanese white rabbits preserved in Optisol™-GS (Bausch & Lomb) corneal storage medium at 4 °C for 0, 1, and 7 days. Corneas preserved for 7 days were also incubated at 37 °C in culture media for an additional 2 days. A rabbit CEC line was also preserved in Optisol™-GS at 4 °C for 0 and 1 day. The corneal endothelium specimens and CECs were then assessed by immunostaining and scanning electron-microscopy (SEM).

Results: Immediately post isolation, the CECs of the specimens showed positive immunostaining for primary cilia (i.e., approximately 20%) via anti-acetylated alpha Tubulin antibody and SEM observation. Primary cilia were found to have attenuated/disappeared on the corneal endothelium specimens preserved for 1 or 7 days at 4 °C. After an additional 2-day incubation at 37 °C, primary cilia reappeared on the corneal endothelium specimens (approximately 20%). The disappearance of cilia during the preservation period was also observed in the immortalized CECs.

Conclusion: The findings in this study using rabbit corneas indicate that the primary cilia of corneal endothelium preserved at low temperature disappeared, then reappeared after returning to body temperature, suggesting that temperature has a direct effect on the primary cilia of corneal endothelium.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10384-022-00933-0DOI Listing

Publication Analysis

Top Keywords

primary cilia
28
corneal endothelium
24
cilia corneal
12
endothelium specimens
12
cilia
8
corneal
8
preserved optisol™-gs
8
preserved 7 days
8
primary
7
endothelium
6

Similar Publications

Primary ciliary dyskinesia (PCD, OMIM 244400) is a rare genetic disorder that affects motile cilia and is characterised by impaired mucociliary clearance of the airway epithelium, which results in chronic upper and lower airway infections. While short-read next-generation sequencing technology has been used for the genetic testing of PCD, its effectiveness is limited in identifying variants in the gene because of the nearly identical pseudogene As we confirmed that the gene was not expressed in airway cells, we obtained nasal mucosa biopsy specimens for total RNA sequencing (RNA-seq) with library enrichment using exome oligos. Among the 34 nasal samples from patients suspected of having PCD, three aberrant splicing patterns in were identified in two samples.

View Article and Find Full Text PDF

The Role of Primary Cilia in Myoblast Proliferation and Cell Cycle Regulation during Myogenesis.

Cell Struct Funct

January 2025

College of Animal Sciences and Technology and College of Veterinary Medicine, Huazhong Agricultural University.

The process of mammalian myogenesis is fundamental to understanding muscle development and holds broad relevance across multiple fields, from developmental biology to regenerative medicine. This review highlights two key aspects: myoblast proliferation and the role of cilia in this process. Myoblasts, as muscle precursor cells, must undergo tightly regulated cycles of proliferation and differentiation to ensure proper muscle growth and function.

View Article and Find Full Text PDF

The Primary Cilia are Associated with the Axon Initial Segment in Neurons.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, 100871, China.

The primary cilia serve as pivotal mediators of environmental signals and play crucial roles in neuronal responses. Disruption of ciliary function has been implicated in neuronal circuit disorders and aberrant neuronal excitability. However, the precise mechanisms remain elusive.

View Article and Find Full Text PDF

Genetic modifiers are believed to play an important role in the onset and severity of polycystic kidney disease (PKD), but identifying these modifiers has been challenging due to the lack of effective methodologies. In this study, we investigated zebrafish mutants of , a newly identified ADPKD gene, and observed phenotypes similar to those seen in mammalian models, including kidney cysts and bone defects. Using efficient microhomology-mediated end joining (MMEJ)-based genome editing technology, we demonstrated that CRISPRants recapitulate mutant phenotypes while bypassing the early lethality of the mutants to allow for renal cyst analysis in adult fish.

View Article and Find Full Text PDF

Function of nodal cilia in left-right determination: Mechanical regulation in initiation of symmetry breaking.

Biophys Physicobiol

September 2024

Department of Cell Biology, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.

Visceral organs in vertebrates are arranged with left-right asymmetry; for example, the heart is located on the left side of the body. Cilia at the node of mouse early embryos play an essential role in determining this left-right asymmetry. Using information from the anteroposterior axis, motile cilia at the central region of the node generate leftward nodal flow.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!