The unique solvatochromic attitude of an analyte owing to its coordination with metal ions in solvents of different polarities is challenging. Herein, we introduce two new solvatochromic 4-(pentan-3-yl) benzaldehyde-based triazolyl silatrane probes ( and ). The solvatochromic behavior of both probes and was studied using Reichardt's E (30) and the Kamlet-Taft empirical scale by UV-visible spectra in 14 solvents (hydrogen-bond donor (HBD) and non-HBD), and the results show that probes and exhibit reverse solvatochromism. Probe witnessed an enhancement in this behavior upon coordination with the Cu ion in MeCN/MeOH solvents due to the intramolecular charge transfer (ICT) process. Interestingly, the binding of probe with Cu ions resulted in an instant color change in MeCN and MeOH from pale yellow to light blue and brown-red, respectively, which can be easily detected by the "naked eye". A solvatochromic study of the complex -Cu in binary mixtures of polar aprotic and polar protic solvents (MeCN/MeOH) discloses that the latter are more preferred over polar aprotic solvents in the solvation microsphere. The entire metal coordination process of probe toward the Cu ion can be visualized and was further evaluated by UV-vis/fluorescence spectral titrations, Fourier transform infrared (FT-IR) spectroscopy, and theoretical calculations employing density functional theory (DFT) and time-dependent-DFT (TD-DFT). The proposed analytical approach is believed to play a crucial role in the solvatochromic study of higher coordinated silicon compounds, which may be utilized to develop a solvent-dependent sensor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.2c02184 | DOI Listing |
J Phys Chem B
January 2025
Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, India.
Nonplanar (butterfly-shaped) phenothiazine () and its derivative's () photophysical and spectral properties have been tuned by varying the solvents and their polarity and investigated employing spectroscopic techniques such as UV-Vis, steady-state and time-resolved fluorescence, and TDDFT calculations. The UV-Vis absorption studies and TDDFT calculations reveal two distinct bands for both compounds: a strong π-π* transition at shorter wavelengths and a weaker -π* transition, which displays a little bathochromic shift in polar solvents. The detailed emission studies reveal that such dual emission is a result of the photoinduced excited-state conjugation enhancement (ESCE) process.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemical Engineering, Tohoku University, Sendai, Miyagi 9808579, Japan.
Aqueous antibacterial colloids are potential agents that kill bacteria via physical contact. Conventionally, antibacterial agents are designed to be small, cationic, or hydrophobic. However, hydrophobic materials easily aggregate in aqueous media, drastically inhibiting their activity.
View Article and Find Full Text PDFAnal Chem
January 2025
Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS, Université de Strasbourg, Institut du Médicament de Strasbourg, 74 route du Rhin, Strasbourg F-67000, France.
The worldwide spread of antibiotic resistance is considered to be one of the major health threats to society. While developing new antibiotics is crucial, there is also a strong need for next-generation analytical methods for studying the physiological state of live bacteria in heterogeneous populations and their response to environmental stress. Here we report a single-cell high-throughput method to monitor changes in the bacterial cell envelope in response to stress based on ratiometric flow cytometry.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
The ion binding to the lipid/water interface can substantially influence the structural, functional, and dynamic properties of the cell membrane. Despite extensive research on ion-lipid interactions, the specific effects of ion binding on the polarity and hydration at the lipid/water interface remain poorly understood. This study explores the influence of three biologically relevant divalent cations─Mg, Ca, and Zn─on the depth-dependent interfacial polarity and hydration of zwitterionic DPPC lipid in its gel phase at room temperature.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281, S4-bis, B-9000 Ghent, Belgium.
Physical understanding and determination of different analytes without the need for advanced and additional equipment are highly important, which can be achieved by using stimuli-induced chromic materials. Physical and chemical incorporation of responsive chromophores into different polymers results in the fabrication of chromic polymers. Chromic electrospun nanofibers are prepared using the electrospinning technique, and their stimuli-responsivity is improved due to their high surface-to-volume ratio.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!