Electrochemical water splitting is considered to be a promising renewable hydrogen generation technology but is significantly limited by the kinetically sluggish oxygen evolution reaction (OER) at the anode. Herein, a silver nanoparticle decorated nickel-cobalt (oxy)hydroxide composite is fabricated on nickel foam (Ag@NiCo(OH)/NF) electrodeposition followed by spontaneous redox reaction. Benefitting from the synergetic contributions of an amorphous/crystalline phase, abundant artificial heterointerfaces, and a 3D porous architecture, the as-designed Ag@NiCo(OH)/NF shows substantially enhanced electrocatalytic performance toward the OER and urea oxidation reaction. Impressively, in the urea-assisted alkaline electrolyzer (coupled with commercial Pt/C on NF as the cathode) for hydrogen production, a cell voltage of only 1.49 V is required to deliver a current density of 50 mA cm, much lower than that of traditional water splitting (1.69 V). Importantly, this work represents a facile and feasible method to exploit efficient self-supported electrocatalysts toward overall water splitting and urea-rich wastewater purification.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2dt01485hDOI Listing

Publication Analysis

Top Keywords

water splitting
12
decorated nickel-cobalt
8
oxygen evolution
8
urea oxidation
8
silver decorated
4
nickel-cobalt oxyhydroxides
4
oxyhydroxides fabricated
4
fabricated surface
4
surface reconstruction
4
reconstruction engineering
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!