Commercial scale transfer of a twin-screw melt granulation process for high drug load fevipiprant tablets.

Drug Dev Ind Pharm

Global Program Management, Portfolio Strategy and Management, Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA.

Published: May 2022

Objective: This work summarizes select methodology of twin-screw melt granulation (TSMG) and process analytical technology that were used in the successful scaling-up and commercial transfer of high drug load (80.5% w/w) immediate release fevipiprant tablets.

Significance: The unique and compelling learnings from this industry work are (1) insights into Novartis AG's commercial scale transfer using TSMG and (2) rapid, nondestructive NIR methodology as a PAT tool for RTR testing. No prior literature combines these two aspects at the level of detail we present/disclose.

Methods: Scaling up of TSMG was guided by specific energy values obtained for the 27 mm (pilot scale) and 50 mm (commercial scale) twin-screw extruders (TSE). Proven acceptable ranges (PARs) were confirmed by varying the critical process parameters (CPPs) for granulation (screw speed) and tableting (dwell time and crushing strength) at three process levels (upper, target, and lower). An at-line NIR method was developed and validated for real-time release testing (RTRT).

Results: The combination of CPPs were selected to have the same effect on critical quality attributes (CQAs), that is, lower (-) and upper (+) process level challenged tablet aspect/appearance and dissolution, respectively. TSMG was performed using a 50 mm extruder at constant feed rate. Compression of the six final blends (∼300 kg) showed no impact of varied granulation and compression process conditions on both CQAs. A near-infrared spectroscopy method was validated to determine content uniformity, assay, identity, and to predict CQAs on uncoated tablets in preparation for a real RTRT of future batches.

Download full-text PDF

Source
http://dx.doi.org/10.1080/03639045.2022.2104307DOI Listing

Publication Analysis

Top Keywords

commercial scale
12
scale transfer
8
twin-screw melt
8
melt granulation
8
high drug
8
drug load
8
process
6
commercial
4
transfer twin-screw
4
granulation
4

Similar Publications

Genes involved in DMSO-mediated yield increase of entomopathogenic nematodes.

Sci Rep

December 2024

Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China.

Entomopathogenic nematodes (EPNs) associated with their symbiotic bacteria can effectively kill insect pests, in agriculture, forestry and floriculture. Industrial-scale production techniques for EPNs have been established, including solid and liquid monoculture systems. It is found that supplement of 0.

View Article and Find Full Text PDF

A novel air-to-liquid mass transfer system using wetted rotating membranes was designed to enhance air-to-liquid carbon dioxide (CO) mass transfer efficiency. Traditional methods, such as sparging, are energy-intensive, but the rotating membrane reduces energy demands by optimising membrane wetting via rotational motion. Experimental tests were conducted using a small-scale system with a membrane width of 0.

View Article and Find Full Text PDF

Aqueous zinc-ion batteries (AZIBs) stand out among many energy storage systems due to their many merits, and it's expected to become an alternative to the prevailing alkali metal ion batteries. Nevertheless, the cumbersome manufacturing process and the high cost of conventional separators make them unfavorable for large-scale applications. Herein, inspired by the unique nature of cellulose and ZrO, a Janus cellulose fiber (CF)/polyvinyl alcohol (PVA)/ZrO separator is prepared via the vacuum filtration method.

View Article and Find Full Text PDF

Robust Immobilization and Activity Preservation of Enzymes in Porous Frameworks by Silica-Based "Inorganic Glue".

Adv Mater

December 2024

MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China.

The development of novel methods to enhance enzyme-carrier interactions in situ, at a feasible cost, and on a large scale is crucial for improving the stability and durability of current immobilized enzyme systems used in industrial settings. Here, a pioneering approach termed "silica-based inorganic glue" is proposed, which utilizes protein-catalyzed silicification to fix enzyme within porous matrix while preserving enzyme activity. This innovative strategy offers several key benefits, including conformational stabilization of enzymes, improved interactions between enzymes and the matrix, prevention of enzyme leakage, and mitigation of pore blocking.

View Article and Find Full Text PDF

Background: With the continuous progress and in-depth implementation of the reform of the medical and health care system, alongside the gradual enhancement of the standardized training framework for residents, such training has become a crucial avenue for cultivating high-level clinicians and improving medical quality. However, due to various constraints and limitations in their own capabilities, residents undergoing standardized training are often susceptible to job burnout during this process. Numerous factors contribute to job burnout, which is closely associated with depression and anxiety.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!