AI Article Synopsis

  • Phylodynamic methods are used to analyze how viruses spread geographically and temporally, but traditional models assume constant dispersal rates, which is often inaccurate.
  • The authors propose improvements to these models by allowing varying rates of viral dispersal over specific time intervals and developing new statistical methods to analyze this data more effectively.
  • Their findings reveal significant variability in viral spread during the early COVID-19 pandemic, suggesting that previous models may have been misleading and highlighting the importance of tailored interventions.

Article Abstract

Phylodynamic methods reveal the spatial and temporal dynamics of viral geographic spread, and have featured prominently in studies of the COVID-19 pandemic. Virtually all such studies are based on phylodynamic models that assume-despite direct and compelling evidence to the contrary-that rates of viral geographic dispersal are constant through time. Here, we: (1) extend phylodynamic models to allow both the average and relative rates of viral dispersal to vary independently between pre-specified time intervals; (2) implement methods to infer the number and timing of viral dispersal events between areas; and (3) develop statistics to assess the absolute fit of discrete-geographic phylodynamic models to empirical datasets. We first validate our new methods using simulations, and then apply them to a SARS-CoV-2 dataset from the early phase of the COVID-19 pandemic. We show that: (1) under simulation, failure to accommodate interval-specific variation in the study data will severely bias parameter estimates; (2) in practice, our interval-specific discrete-geographic phylodynamic models can significantly improve the relative and absolute fit to empirical data; and (3) the increased realism of our interval-specific models provides qualitatively different inferences regarding key aspects of the COVID-19 pandemic-revealing significant temporal variation in global viral dispersal rates, viral dispersal routes, and the number of viral dispersal events between areas-and alters interpretations regarding the efficacy of intervention measures to mitigate the pandemic.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9384482PMC
http://dx.doi.org/10.1093/molbev/msac159DOI Listing

Publication Analysis

Top Keywords

viral dispersal
20
phylodynamic models
16
rates viral
12
viral geographic
8
covid-19 pandemic
8
dispersal events
8
absolute fit
8
discrete-geographic phylodynamic
8
dispersal
7
viral
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!