AI Article Synopsis

Article Abstract

Phthalates represent a group of substances used in industry that have antiandrogenic activity and are found in different concentrations in human urine and plasma. More than 8 million tons of phthalates are used each year, predominantly as plasticizers in polyvinyl chloride (PVC) products. Phthalates are widely used in everyday consumer products and improperly discarded into the environment. Furthermore, in vivo studies carried out in our laboratory showed that a mixture of phthalates, equivalent to the mixture used in this study, deregulated the expression of genes and miRNAs associated with prostatic carcinogenic pathways. Thus, this study was designed to establish an in vitro model to assess pathways related to cell survival, proliferation, apoptosis, and biosynthesis of miRNAs, using both normal and tumoral prostatic epithelial cells exposed to an environmentally relevant mixture of phthalate metabolites. Tumor (LNCaP) and normal (PNT-2) prostatic epithelial cell lines were exposed for 24 and 72 h to vehicle control or the phthalate mixture. The selected metabolite mixture (1000 μmol/L) consisted of 36.7% monoethyl phthalate (MEP), 19.4% mono(2-ethylhexyl) phthalate (MEHP), 15.3% monobutyl phthalate (MBP), 10.2% monoisobutyl phthalate (MiBP), 10.2% monoisononyl phthalate (MiNP), and 8.2% monobenzyl phthalate (MBzP). Gene expression was performed by qRT-PCR and cell migratory potential was measured using cell migration assays. Our results showed that the mixture of phthalates increased cell turnover, oxidative stress, biosynthesis, and expression of miRNAs in LNCaP cells; thus, increasing their cellular expansive and migratory potential and modulating tumor behavior, making them possibly more aggressive. However, these effects were less pronounced in benign cells, demonstrating that, in the short term, benign cells are able to develop effective mechanisms or more resistance against the insult.

Download full-text PDF

Source
http://dx.doi.org/10.1002/tox.23619DOI Listing

Publication Analysis

Top Keywords

metabolite mixture
8
normal tumoral
8
mixture phthalates
8
prostatic epithelial
8
phthalate
8
migratory potential
8
benign cells
8
mixture
7
cells
5
phthalates
5

Similar Publications

Background: Synergists reduce insecticide metabolism in mosquitoes by competing with insecticides for the active sites of metabolic enzymes, such as cytochrome P450s (CYPs). This increases the availability of the insecticide at its specific target site. The combination of both insecticides and synergists increases the toxicity of the mixture.

View Article and Find Full Text PDF

E-waste contains hazardous chemicals that may be a direct health risk for workers involved in recycling. We conducted an untargeted metabolomics analysis of urine samples collected from male e-waste processing workers to explore metabolic changes associated with chemical exposures in e-waste recycling in Belgium, Finland, Latvia, Luxembourg, the Netherlands, Poland, and Portugal. Questionnaire data and urine samples were obtained from workers involved in the processing of e-waste (sorting, dismantling, shredding, pre-processing, metal, and non-metal processing), as well as from controls with no known occupational exposure.

View Article and Find Full Text PDF

Introduction: Posttraumatic stress disorder (PTSD) is a debilitating disorder characterized by intrusive memories, avoidance, negative thoughts and moods, and heightened arousal. Many patients also report gastrointestinal symptoms. Cognitive behavioral therapy (CBT) is an evidence-based treatment approach for PTSD that successfully reduces symptoms.

View Article and Find Full Text PDF

The widespread occurrence of pesticides requires thorough evaluations of human population exposure to these chemicals, particularly children, because of the potential long-term effects of some of these neurotoxicants. The present study describes an in-depth screening of 15 pesticides including organophosphates, pyrethroids, carbamates, triazoles, neonicotinoids and their main metabolites. Internal exposure of 7-9-year-old children from urban and agricultural locations in Poland (n = 399) has been studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!