To investigate whether the disposition of triclabendazole (TCBZ) and its metabolites in blood or bile influenced its flukicidal potency, TCBZ was administered intraruminally at 10 mg kg-1 to sheep surgically fitted with a permanent re-entrant bile duct cannula. The profiles of TCBZ metabolites in peripheral plasma and bile were determined using high performance liquid chromatography. In plasma, only TCBZ sulphoxide (TCBZ-SO) and TCBZ sulphone were present and reached their maximum concentrations (greater than 13 micrograms ml-1) at 18 and 36 h, respectively, after administration. TCBZ metabolites were specifically bound to plasma albumin, which is believed to exert a major influence on the duration of plasma TCBZ metabolite concentrations and consequent exposure of liver fluke. In bile, the major TCBZ metabolites were hydroxylated in the 4' position and secreted predominantly as sulphate esters with lesser proportions as glucuronide conjugates. The major biliary metabolite was conjugated hydroxy TCBZ-SO which reached a maximum concentration in excess of 40 micrograms ml-1 and contributed almost half the total conjugated metabolites. The major free biliary metabolite was TCBZ-SO. Of the administered TCBZ dose, 9.7% was secreted as free metabolites in bile whereas 35.8% was secreted as conjugated metabolites. Approximately 6.5% of the dose was excreted in urine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-2885.1987.tb00078.x | DOI Listing |
Parasitol Res
April 2022
Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Giessen, Germany.
Understanding drug penetration, distribution, and metabolization is fundamental for understanding drug efficacy. This also accounts for parasites during antiparasitic treatment. Recently, we established matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) in blood flukes and liver flukes.
View Article and Find Full Text PDFSci Rep
August 2020
Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK.
Exp Parasitol
September 2019
Laboratorio de Farmacología, Centro de Investigación Veterinarias de Tandil (CIVETAN. CONICET-CIC-UNCPBA), Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (FCV-UNCPBA), Tandil, Argentina. Electronic address:
The aim of the current work was to evaluate a potential pharmacokinetic interaction between the flukicide triclabendazole (TCBZ) and the broad-spectrum benzimidazole (BZD) anthelmintic oxfendazole (OFZ) in sheep. To this end, both an in vitro assay in microsomal fractions and an in vivo trial in lambs parasitized with Haemonchus contortus resistant to OFZ and its reduced derivative fenbendazole (FBZ) were carried out. Sheep microsomal fractions were incubated together with OFZ, FBZ, TCBZ, or a combination of either FBZ and TCBZ or OFZ and TCBZ.
View Article and Find Full Text PDFJ Vet Pharmacol Ther
June 2018
Facultad de Ciencias Veterinarias, Laboratorio de Farmacología, Centro de Investigación Veterinarias de Tandil (CIVETAN-CONICET-CICPBA), Universidad Nacional del Centro de la Provincia de Buenos Aires (FCV-UNCPBA), Tandil, Argentina.
Parasitic diseases have a significant impact on livestock production. Nematodicidal drugs, such as fenbendazole (FBZ) or its oxidized metabolite oxfendazole (OFZ), can be used along with the trematodicidal triclabendazole (TCBZ), to broaden the spectrum of anthelmintic activity. However, co-exposure to these compounds could lead to drug-drug (D-D) interactions and eventually alter the clinical profile of each active principle.
View Article and Find Full Text PDFJ Pharm Biomed Anal
June 2017
Centro nazionale per il controllo e la valutazione dei farmaci, Istituto Superiore di Sanità, Viale Regina Elena 299, I-00161 Rome, Italy. Electronic address:
Direct HPLC separation of the enantiomers of triclabendazole sulfoxide (TCBZ-SO), which is the main metabolite of the anthelmintic drug triclabendazole, was carried out using the polysaccharide-based Chiralpak AS-H and Chiralpak IF-3 chiral stationary phases (CSPs). The chromatographic behaviour of both CSPs was evaluated and compared using normal-phase and reversed-phase eluents at different column temperatures. The eluent mixture of n-hexane-2-propanol-trifluoroacetic acid 70:30:0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!