Background: Insoluble dietary fiber (IDF) has beneficial physiological effects, such as the promoting of intestinal peristalsis, the improving of intestinal flora, and the absorbing of some harmful substances. Okara, a byproduct of soybean processing, is a potential source of IDF. But the larger particle size and poor water solubility of okara IDF have adverse effects on sensory properties and functional characteristics. Therefore, we used an emerging type of physical method is electron beam irradiation (EBI) to modify okara, and investigated that the effects of EBI doses on the structure and functional properties of okara IDF.

Results: It was found that the electron beam treatment damaged the crystalline structure of IDF. Observation of the surface of EBI-treated IDF revealed a loose and porous morphology rather than the typical smooth structure. At a dose of 6 kGy, a smallest particle size and largest specific surface area of IDF was obtained, and these factors increased the apparent viscosity of an IDF dispersion. The water holding capacity, swelling capacity and the oil holding capacity upon irradiation at 6 kGy increased 74.13%, 84.76% and 41.62%, respectively. In addition, the capacity for adsorption of cholesterol, sodium cholate, glucose and nitrite ion were improved after electron beam treatment.

Conclusion: The modified okara IDF showed improved particle sizes and hydration properties, and these changes correlated with an improvement to the rough taste of IDF and improvements to the texture and storage period upon supplementation into food. © 2022 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jsfa.12131DOI Listing

Publication Analysis

Top Keywords

electron beam
16
idf
9
beam irradiation
8
functional properties
8
properties okara
8
insoluble dietary
8
dietary fiber
8
particle size
8
okara idf
8
holding capacity
8

Similar Publications

To satisfy the needs of the current technological world that demands high performance and efficiency, a deep understanding of the whole fabrication process of electronic devices based on low-dimensional materials is necessary for rapid prototyping of devices. The fabrication processes of such nanoscale devices often include exposure to an electron beam. A field effect transistor (FET) is a core device in current computation technology, and FET configuration is also commonly used for extraction of electronic properties of low-dimensional materials.

View Article and Find Full Text PDF

Electron microscopy in its various forms is one of the most powerful imaging and structural elucidation methods in nanotechnology where sample information is generally limited by random chemical and structural damage. Here we show how a well-selected chemical probe can be used to transform indiscriminate chemical damage into clean chemical processes that can be used to characterize some aspects of the interactions between high-energy electron beams and soft organic matter. Crystals of a Dewar benzene exposed to a 300 keV electron beam facilitate a clean valence-bond isomerization radical-cation chain reaction where the number of chemical events per incident electron is amplified by a factor of up to ca.

View Article and Find Full Text PDF

A ridge-loaded staggered double-vane slow-wave structure is proposed for terahertz radiation sources employing a sheet electron beam. This slow-wave structure has the advantages of enhanced electric field and energy density distribution and improved interaction impedance in the beam-wave interaction region. High-frequency characteristics are investigated for the proposed slow wave structure and compared with those of the staggered double-vane slow wave structure.

View Article and Find Full Text PDF

Generation of highly stable electron beam via the control of hydrodynamic instability.

Sci Rep

December 2024

SANKEN (Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan.

By employing the stabilizer in the supersonic gas nozzle to produce the plasma density profile with a sharp downramp, we have experimentally demonstrated highly stable electron beam acceleration based on the shock injection mechanism in laser wakefield acceleration with the use of a compact Ti:sapphire laser. A quasi-monoenergetic electron beam with a peak energy of 315 MeV ± 12.5 MeV per shot is generated.

View Article and Find Full Text PDF

Topological semimetals have recently garnered widespread interest in the quantum materials research community due to their symmetry-protected surface states with dissipationless transport which have potential applications in next-generation low-power electronic devices. One such material, [Formula: see text], exhibits Dirac nodal arcs and although the topological properties of single crystals have been investigated, there have been no reports in crystalline thin film geometry. We examined the growth of [Formula: see text] heterostructures on a range of single crystals by optimizing the electron beam evaporation of Pt and Sn and studied the effect of vacuum thermal annealing on phase and crystallinity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!