The low heritability and moderate repeatability of semen production traits in beef and dairy bulls suggest that nonadditive genetic effects, such as dominance and epistatic effects, play an important role in semen production and should therefore be considered in genetic improvement programs. In this study, the repeatability of semen production traits in Japanese Black bulls (JB) as beef bulls and Holstein bulls (HOL) as dairy bulls was evaluated by considering additive and nonadditive genetic effects using the Illumina BovineSNP50 BeadChip. We also evaluated the advantage of using more complete models that include nonadditive genetic effects by comparing the rank of genotyped animals and the phenotype prediction ability of each model. In total, 65,463 records for 615 genotyped JB and 48,653 records for 845 genotyped HOL were used to estimate additive and nonadditive (dominance and epistatic) variance components for semen volume (VOL), sperm concentration (CON), sperm motility (MOT), MOT after freeze-thawing (aMOT), and sperm number (NUM). In the model including both additive and nonadditive genetic effects, the broad-sense heritability (0.17 to 0.43) was more than twice as high as the narrow-sense heritability (0.04 to 0.11) for all traits and breeds, and the differences between the broad-sense heritability and repeatability were very small for VOL, NUM, and CON in both breeds. A large proportion of permanent environmental variance was explained by epistatic variance. The epistatic variance as a proportion of total phenotypic variance was 0.07 to 0.33 for all traits and breeds. In addition, heterozygosity showed significant positive relationships with NUM, MOT, and aMOT in JB and NUM in HOL, when the heterozygosity rate was included as a covariate. In a comparison of models, the inclusion of nonadditive genetic effects resulted in a re-ranking of the top genotyped bulls for the additive effects. Adjusting for nonadditive genetic effects could be expected to produce a more accurate breeding value, even if the models have similar fitting. However, including nonadditive genetic effects did not improve the ability of any model to predict phenotypic values for any trait or breed compared with the predictive ability of a model that includes only additive effects. Consequently, although nonadditive genetic effects, especially epistatic effects, play an important role in semen production traits, they do not improve prediction accuracy in beef and dairy bulls.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9467033PMC
http://dx.doi.org/10.1093/jas/skac241DOI Listing

Publication Analysis

Top Keywords

nonadditive genetic
36
genetic effects
36
semen production
20
additive nonadditive
16
production traits
16
dairy bulls
16
effects
13
beef dairy
12
ability model
12
epistatic variance
12

Similar Publications

Non-Additive Gene Expression in Carbon and Nitrogen Metabolism Drives Growth Heterosis in Populus deltoides.

Plant Cell Environ

January 2025

State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.

Growth heterosis is crucial for Populus deltoides breeding, a key industrial-timber and ecological-construction tree species in temperate regions. However, the molecular mechanisms underlying carbon (C)-nitrogen (N) metabolism coordination in regulating growth heterosis remain unclear. Herein high-hybrids of P.

View Article and Find Full Text PDF

Litter size traits of sows are crucial for the economic benefits of the pig industry. Three phenotypic traits of 1,206 Large White (LW) pigs, that is, the total number born (TNB), number born alive (NBA), and number of healthy piglets (NHP), were recorded. We evaluated a series of genomic best linear unbiased prediction (GBLUP) models that sequentially added additive effects (model A), dominance effects (model A+D), and epistatic effects (model A+D+AA, model A+D+AA+AD, and model A+D+AA+AD+DD) using chip data and imputed whole-genome sequencing (WGS) data to estimate genetic parameters and predictive accuracy.

View Article and Find Full Text PDF

Late wilt disease caused by the fungal pathogen represents a major threat to maize cultivation in the Mediterranean region. Developing resistant hybrids and high-yielding offers a cost-effective and environmentally sustainable solution to mitigate yield losses. Therefore, this study evaluated genetic variation, combining abilities, and inheritance patterns in newly developed twenty-seven maize hybrids for grain yield and resistance to late wilt disease under artificial inoculation across two growing seasons.

View Article and Find Full Text PDF

Complex genetic interactions affect susceptibility to Alzheimer's disease risk in the BIN1 and MS4A6A loci.

Geroscience

January 2025

Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Erwin Mill Building, 2024 W. Main St, Durham, NC, 27705, USA.

Genetics is the second strongest risk factor for Alzheimer's disease (AD) after age. More than 70 loci have been implicated in AD susceptibility so far, and the genetic architecture of AD entails both additive and nonadditive contributions from these loci. To better understand nonadditive impact of single-nucleotide polymorphisms (SNPs) on AD risk, we examined individual, joint, and interacting (SNPxSNP) effects of 139 and 66 SNPs mapped to the BIN1 and MS4A6A AD-associated loci, respectively.

View Article and Find Full Text PDF

KPRR: a novel machine learning approach for effectively capturing nonadditive effects in genomic prediction.

Brief Bioinform

November 2024

State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing, 100193, China.

Nonadditive genetic effects pose significant challenges to traditional genomic selection methods for quantitative traits. Machine learning approaches, particularly kernel-based methods, offer promising solutions to overcome these limitations. In this study, we developed a novel machine learning method, KPRR, which integrated a polynomial kernel into ridge regression to effectively capture nonadditive genetic effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!