AI Article Synopsis

  • The performance of semiconductor photocatalysts in reactions depends significantly on their surface states, which facilitate charge transfer.
  • Rh-doped rutile shows a 30x increase in hydrogen production efficiency when ascorbic acid is used as a sacrificial agent, compared to undoped rutile.
  • Ascorbic acid alters the surface chemistry by neutralizing harmful Rh(IV) sites, ultimately boosting the photocatalytic activity of Rh-doped rutile by reducing recombination of electron-hole pairs.

Article Abstract

The surface states of a semiconductor photocatalyst are essential for interfacial charge transfer in heterogeneous photocatalytic reactions. Here, we report that the light-driven hydrogen evolution reaction (HER) activity of 0.5 mol % Rh-doped rutile increases by more than 30 times compared with that of rutile when ascorbic acid is used as a sacrificial agent. Intensity-modulated photocurrent spectroscopy and surface photovoltage spectroscopy are employed to reveal the impact of surface states on the photo-oxidation reactions. It is found that the adsorption of ascorbic acid molecules dramatically reduces the activity of rutile due to coverage of the HER-active Ti sites. Nevertheless, for Rh-doped rutile, ascorbic acid neutralizes the Rh(IV) sites that would otherwise cause severe recombination of electron-hole pairs and resurrects its photocatalytic performance. This work demonstrates the key role of interfacial chemistry in photocatalytic reactions and provides a strategy for excavating the potential of various photocatalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c06302DOI Listing

Publication Analysis

Top Keywords

ascorbic acid
16
rh-doped rutile
12
light-driven hydrogen
8
interfacial chemistry
8
surface states
8
photocatalytic reactions
8
rutile ascorbic
8
rutile
5
insight light-driven
4
hydrogen production
4

Similar Publications

A novel dual-mode microfluidic sensing platform integrating photoelectrochemical (PEC) and fluorescence (FL) sensors was developed for the sensitive monitoring of heart fatty acid binding protein (h-FABP). First, BiVO/AgInS (BVAIS) composites with excellent photoelectric activity were synthesized as sensing matrices. The BVAIS heterojunction with a well-matched internal energy level structure provided a stable photocurrent.

View Article and Find Full Text PDF

Background: Microbiota of the distal part of the intestine produces Urolithin A (Uro A) as a derivative of ellagitannins hydrolysis. Recently, the mitophagy, anti-inflammatory, and antioxidant properties of Uro A have focused more attention on its probable beneficial effects on neurodegenerative states. The purpose of this research was to study the impact of Uro A on the histopathology of the cerebellum in a rat model of streptozotocin-induced Alzheimer's disease.

View Article and Find Full Text PDF

This study aimed at comparing gingival depigmentation by locally injected vitamin C with surgical depigmentation, in terms of effectiveness and patient acceptability. Forty-two patients presenting with ethnicity-related hyperpigmentation were randomly divided into two groups, Group I ( = 21) was treated with locally injected vitamin C and Group II ( = 21) was treated by surgical depigmentation. The outcome was assessed using Gingival Pigmentation Index (GPI) and Skin Hyperpigmentation Index (SHI).

View Article and Find Full Text PDF

Soil contamination with toxic heavy metals [such as aluminum (Al)] is becoming a serious global problem due to the rapid development of the social economy. Although plant growth-promoting rhizo-bacteria (PGPR) are the major protectants to alleviate metal toxicity, the study of these bacteria to ameliorate the toxic effects of Al is limited. Therefore, the present study was conducted to investigate the combined effects of different levels of (5 ppm and 10 ppm) of accession number of MT123456 on plant growth and biomass, photosynthetic pigments, gas exchange attributes, oxidative stress and response of antioxidant compounds (enzymatic and nonenzymatic), and their specific gene expression, sugars, nutritional status of the plant, organic acid exudation pattern and Al accumulation from the different parts of the plants, which was spiked with different levels of Al [0 µM (i.

View Article and Find Full Text PDF

Herein, we discuss the idea that fluorescent materials/molecules should logically show potential photoelectrochemistry (PEC) activity, and, in particular, the PEC of fluorescent small molecules (previously usually acting only as dye sensitizers for conventional semiconductors) is explored. After examining the PEC activities of some typical inorganic or organic fluorescent materials/molecules and by adopting methyl violet (MV) with the highest PEC activity among the examined fluorescent small molecules, a new and efficient (MV/Au nanoparticles (AuNPs))/fluorine-doped tin oxide (FTO) photoanode without conventional semiconductor(s) is prepared by layer-by-layer alternating the electrodeposition of AuNPs and the adsorption of MV. A bilirubin oxidase (BOD)/CuCoO/FTO bio-photocathode is prepared by electrodeposition, calcination and cast-coating.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!