Electrocardiography (ECG) is a technique for observing and recording the electrical activity of the human heart. The usage of an ECG signal is common among clinical professionals in the collection of time data for the examination of any rhythmic conditions associated with a subject. The investigation was carried out in order to computerize the assignment by exhibiting the issue using encoder-decoder techniques, creating the information that was simply typical of it, and utilising misfortune appropriation to anticipate standard or anomalous information. On a broad variety of applications such as voice recognition and prediction, the long short-term memory (LSTM) fully connected layer (FCL) and the two convolutional neural networks (CNNs) have shown superior performance over deep learning networks (DLNs). DNNs are suitable for making high points for a more divisible region and CNNs are suitable for reducing recurrence types, LSTMs are appropriate for temporary displays, in the same way as CNNs are appropriate for reducing recurrence types. The CNN, LSTM, and DNN algorithms are acceptable for viewing. The complementarity of DNNs, CNNs, and LSTMs was investigated in this research by bringing them all together under the single architectural company. The researchers got the ECG data from the MIT-BIH arrhythmia database as a result of the investigation. Our results demonstrate that the approach proposed may expressively describe ECG series and identify abnormalities via scores that outperform existing supervised and unsupervised methods in both the short term and long term. The LSTM network and FCL additionally demonstrated that the unbalanced datasets associated with the ECG beat detection problem could be consistently resolved and that they were not susceptible to the accuracy of ECG signals. It is recommended that cardiologists employ the unique technique to aid them in performing reliable and impartial interpretation of ECG data in telemedicine settings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9293511 | PMC |
http://dx.doi.org/10.1155/2022/6348424 | DOI Listing |
Network
December 2024
Department of Electronics and Communication Engineering, Dronacharya Group of Institutions, Greater Noida, UP, India.
Speaker verification in text-dependent scenarios is critical for high-security applications but faces challenges such as voice quality variations, linguistic diversity, and gender-related pitch differences, which affect authentication accuracy. This paper introduces a Gender-Aware Siamese-Triplet Network-Deep Neural Network (ST-DNN) architecture to address these challenges. The Gender-Aware Network utilizes Convolutional 2D layers with ReLU activation for initial feature extraction, followed by multi-fusion dense skip connections and batch normalization to integrate features across different depths, enhancing discrimination between male and female speakers.
View Article and Find Full Text PDFSci Rep
December 2024
School of Electronic Information and Electrical Engineering, Yangtze University, Jingzhou, 434100, Hubei, China.
Emotions play a crucial role in human thoughts, cognitive processes, and decision-making. EEG has become a widely utilized tool in emotion recognition due to its high temporal resolution, real-time monitoring capabilities, portability, and cost-effectiveness. In this paper, we propose a novel end-to-end emotion recognition method from EEG signals, called MSDCGTNet, which is based on the Multi-Scale Dynamic 1D CNN and the Gated Transformer.
View Article and Find Full Text PDFSci Rep
December 2024
School of Public Health, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
The study aims to address the critical issue of toxic side effects resulting from drug combinations, which can significantly increase health risks, clinical complications, and lead to drug being withdrawn from the market. A model named TSEDDI (toxic side effects of drug-drug interaction) has been developed to improve the identification of drug pairs that may induce toxicity or adverse reactions. By utilizing drug chemical structures and diverse proteins, we employ a convolutional neural network (CNN) to extract features from molecular images, enzyme proteins, transporter proteins, and target proteins.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602 105, India.
Chimp optimization algorithm (CHOA) is a recently developed nature-inspired technique that mimics the swarm intelligence of chimpanzee colonies. However, the original CHOA suffers from slow convergence and a tendency to reach local optima when dealing with multidimensional problems. To address these limitations, we propose TASR-CHOA, a twofold adaptive stochastic reinforced variant.
View Article and Find Full Text PDFSci Rep
December 2024
School of Marxism, China University of Political Science and Law (CUPL), Beijing, 100091, China.
To improve students' understanding of physical education teaching concepts and help teachers analyze students' cognitive patterns, the study proposes an association learning-based method for understanding physical education teaching concepts using deep learning algorithms, which extracts image features related to teaching concepts using convolutional neural networks. Moreover, a neurocognitive diagnostic model based on hypergraph convolution is constructed to mine the data of students' long-term learning sequences and identify students' cognitive outcomes. The findings revealed that the highest accuracy of the association graph convolutional neural network was 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!