For southward interplanetary magnetic field (IMF) during local summer, the hemispherically integrated Poynting flux estimated by FAST-satellite-derived empirical models is significantly larger for the northern hemisphere (NH) than for the southern hemisphere (SH). In order to test whether the difference is statistically significant, the model uncertainties have been estimated by dividing the data sets for each hemisphere into two nonintersecting sets, and separately constructing the model using each of the four sets. The model uncertainty appears to be smaller than the estimated asymmetry. The asymmetry is mostly absent when the IMF is northward, except there is some evidence that it may actually reverse during local winter. The phenomena is coupled with what appears to be a more distinct two-cell convection pattern in the NH, and a possibly greater cusp contribution in the SH. All this suggests an effect of magnetosphere-ionosphere-thermosphere coupling, probably related to asymmetries in Earth's geomagnetic field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9285675 | PMC |
http://dx.doi.org/10.1029/2021GL097329 | DOI Listing |
J Geophys Res Space Phys
December 2024
Space Sciences Laboratory University of California Berkeley CA USA.
Magnetically connected observations of particle distributions and luminosity from the Reimei spacecraft are used to examine energy transport and conversion occurring above a discrete auroral arc. By combining imaging and in situ measurements it is shown how transverse electromagnetic and kinetic energy fluxes measured along the spacecraft trajectory converge across geomagnetic field-lines into the acceleration region. It is shown how cross-field energy transport is facilitated by the formation of vortices along the length of the arc.
View Article and Find Full Text PDFSci Adv
June 2024
State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Shear nonreciprocity, implying unequal shear forces in opposite shear directions, can be achieved by arranging structures asymmetrically. However, the nonreciprocal Poynting effect, i.e.
View Article and Find Full Text PDFIn the first part of this work, we introduce a monochromatic solution to the scalar wave equation in free space, defined by a superposition of monochromatic nondiffracting half Bessel-lattice optical fields, which is determined by two scalar functions; one is defined on frequency space, and the other is a complete integral to the eikonal equation in free space. We obtain expressions for the geometrical wavefronts, the caustic region, and the Poynting vector. We highlight that this solution is stable under small perturbations because it is characterized by a caustic of the hyperbolic umbilical type.
View Article and Find Full Text PDFThe analytical expressions for the complex amplitude of integral and fractional perfect vortex (PV) beams propagating in a gradient-index (GRIN) medium are derived. The intensity and phase distributions, propagation trajectories, Poynting vectors, and the effects of topological charge and refractive index at the medium axis on the intensity of both beams in the medium are numerically investigated. It is shown that both beams propagate periodically in the GRIN medium with alternating spot focusing and reconstruction.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2023
Department of Mechanical Engineering, Chang Gung University, 259 Wen-Hwa 1st Rd., Kwei-Shan, Taoyuan 333, Taiwan.
The streamlines of the energy flux (Poynting vectors) and chirality flux as well as the intensity of the electric field around various plasmonic nanostructures (nanocube, nanocuboid, nanotriangle, hexagonal nanoplate and bowtie nanoantenna) induced by a circularly polarized (CP) or linearly polarized (LP) light were studied theoretically. The boundary element method combined with the method of moment was used to solve a set of surface integral equations, based on the Stratton-Chu formulation, for analyzing the highly distorted electromagnetic (EM) field in the proximity of these nanostructures. We discovered that the winding behavior of these streamlines exhibits versatility for various modes of the surface plasmon resonance of different nanostructures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!