Background: Soft-tissue sarcoma (STS) represents a rare and diverse cohort of solid tumors, and encompasses over 100 various histologic and molecular subtypes. In recent years, RNA modifications including mA, mC, mA, and mG have been demonstrated to regulate immune response and tumorigenesis. Nevertheless, the cross-talk among these RNA modification regulators and related effects upon the tumor microenvironment (TME), immune infiltrates, and immunotherapy in STS remain poorly understood.
Methods: In this study, we comprehensively investigated transcriptional and genetic alterations of 32 RNA modification regulators in STS patients from The Cancer Genome Atlas (TCGA) cohort and validated them in the Gene Expression Omnibus (GEO) cohort. Single-cell transcriptomes were introduced to identify regulators within specific cell types, with own sequencing data and RT-qPCR conducted for biological validation. Distinct regulator clusters and regulator gene subtypes were identified by using unsupervised consensus clustering analysis. We further built the regulator score model based on the prognostic regulator-related differentially expressed genes (DEGs), which could be used to quantitatively assess the risk for individual STS patients. The clinical and biological characteristics of different regulator score groups were further examined.
Results: A total of 455 patients with STS were included in this analysis. The network of 32 RNA modification regulators demonstrated significant correlations within multiple different RNA modification types. Distinct regulator clusters and regulator gene subtypes were characterized by markedly different prognoses and TME landscapes. The low regulator score group in the TCGA-SARC cohort was characterized by poor prognosis. The robustness of the scoring model was further confirmed by the external validation in GSE30929 and GSE17674. The regulator score was negatively correlated with CD4+ T cell, Th2 cell, and Treg cell recruitment and most immunotherapy-predicted pathways, and was also associated with immunotherapy efficacy.
Conclusions: Overall, our study is the first to demonstrate the cross-talk of RNA modification regulators and the potential roles in TME and immune infiltrates in STS. The individualized assessment based on the regulator score model could facilitate and optimize personalized treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9289169 | PMC |
http://dx.doi.org/10.3389/fimmu.2022.921223 | DOI Listing |
J Transl Med
December 2024
Department of Cancer Diagnosis and Treatment Center, Affiliated Hospital of Jiangnan University, Wuxi, China.
Background: Colorectal cancer (CRC) is characterized by poor responsiveness to immune evasion and immunotherapy. RNA 7-methylguanine (m7G) modification plays a key role in tumorigenesis. However, the mechanisms by which m7G-modified RNA metabolism affects tumor progression are not fully understood, nor is the contribution of m7G-modified RNA to the CRC immune microenvironment.
View Article and Find Full Text PDFJ Med Virol
January 2025
Microbiology Department, University of Massachusetts, Amherst, Massachusetts, USA.
Kaposi's sarcoma-associated herpesvirus is an oncogenic gammaherpesvirus that plays a major role in several human malignancies, including Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. The complexity of KSHV biology is reflected in the sophisticated regulation of its biphasic life cycle, consisting of a quiescent latent phase and virion-producing lytic replication. KSHV expresses coding and noncoding RNAs, including microRNAs and long noncoding RNAs, which play crucial roles in modulating viral gene expression, immune evasion, and intercellular communication.
View Article and Find Full Text PDFKaohsiung J Med Sci
December 2024
Department of Emergency Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China.
Curcumin and bone marrow stem cells (BMSCs)-derived exosomes are considered to be useful for the treatment of many human diseases, including sepsis-associated acute kidney injury (SA-AKI). However, the role and underlying molecular mechanism of curcumin-loaded BMSCs-derived exosomes in the progression of SA-AKI remain unclear. Exosomes (BMSCs-EXO or BMSCs-EXO) were isolated from curcumin or DMSO-treated BMSCs, and then co-cultured with LPS-induced HK2 cells.
View Article and Find Full Text PDFPLoS One
December 2024
Neuroscience, Merck Research Laboratories, Merck & Co., Inc., Rahway, New Jersey, United States of America.
Ataxin-2 is a protein containing a polyQ extension and intermediate length of polyQ extensions increases the risk of Amyotrophic Lateral Sclerosis (ALS). Down-regulation of Ataxin-2 has been shown to mitigate TDP-43 proteinopathy in ALS models. To identify alternative therapeutic targets that can mitigate TDP-43 toxicity, we examined the interaction between Ataxin-2 and TDP-43.
View Article and Find Full Text PDFMamm Genome
December 2024
Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder that currently affects approximately 1-2% of the global population. Genome-wide studies have identified several loci associated with ASD; however, pinpointing causal variants remains elusive. Therefore, functional studies are essential to discover potential therapeutics for ASD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!