Salinity Stress Response of Rice ( L. cv. Luem Pua) Calli and Seedlings.

Scientifica (Cairo)

Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.

Published: July 2022

Soil salinity limits plant growth and production. This research investigated a suitable medium for callus induction and plantlet regeneration in the Luem Pua rice cultivar. The effect of salt stress on seedling growth was determined using culture and soil conditions. An efficient protocol for callus induction has been developed by culture sterilized seeds on the Murashige and Skoog (MS, 1962) medium containing 0.5 mg/l benzyladenine (BA) with 1 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D) that resulted in a 100% callus induction. Plantlet regeneration percentage of 49% was recorded on the MS medium containing 4 mg/l BA with 0.5 mg/l 1-naphthaleneacetic acid (NAA) after 4 weeks. For salt stress investigation, the calli were treated on an induction medium containing various concentrations of NaCl (0, 50, 100, 150, and 200 mM), while two-week-old rice seedlings were planted in soil and treated with the same concentration of NaCl for 4 weeks. culture revealed that callus survival percentage decreased when NaCl concentration increased, similar to soil culture. Seedling growth under salinity treatment also decreased when NaCl concentration increased, while other physiological parameters such as total chlorophyll, chlorophyll a, chlorophyll b, green intensity, and chlorophyll fluorescence under light conditions increased under salinity stress. These changes define the growth and physiological salinity tolerance characteristics of Luem Pua rice calli and seedlings. They can be utilized as a baseline for demand-driven rice propagation, providing useful information that can be combined with other agronomic features in rice development or breeding programs to improve the flexibility of abiotic stress-tolerant cultivars.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9293579PMC
http://dx.doi.org/10.1155/2022/5616683DOI Listing

Publication Analysis

Top Keywords

luem pua
12
callus induction
12
salinity stress
8
calli seedlings
8
induction plantlet
8
plantlet regeneration
8
pua rice
8
salt stress
8
seedling growth
8
decreased nacl
8

Similar Publications

Alzheimer's disease (AD) is the most common neurodegenerative disorder in the aging population. An accumulation of amyloid plaques and neurofibrillary tangles causes degeneration of neurons, leading to neuronal cell death. The anthocyanin-rich fraction of black rice ( L.

View Article and Find Full Text PDF

Ulcerative colitis (UC) and Crohn's disease (CD) are two major forms of inflammatory bowel disease (IBD). The disease has been linked with gut microbiota dysbiosis in which the balance of commensal communities is disrupted. Accumulating evidence demonstrates that treatment with biologically active compounds can modulate gut microbiota composition in animal models.

View Article and Find Full Text PDF

Soil salinity limits plant growth and production. This research investigated a suitable medium for callus induction and plantlet regeneration in the Luem Pua rice cultivar. The effect of salt stress on seedling growth was determined using culture and soil conditions.

View Article and Find Full Text PDF

Obesity is acknowledged as being a world health problem and increases the risk of several chronic diseases including chronic kidney disease. High-fat diet consumption and obesity-related renal disease show a close correlation with increased oxidative stress. Black rice bran extract, (BRE) Oryza sativa L.

View Article and Find Full Text PDF

Seed phytochemicals shape the community structures of cultivable actinobacteria-inhabiting plant interiors of Thai pigmented rice.

Microbiologyopen

August 2018

Infrastructure and Environment Research Division, School of Engineering, University of Glasgow, Glasgow, United Kingdom.

We examined abundance, bioactivity, and endophytism of cultivable actinobacteria isolated from plant interiors of two Thai pigmented rice cultivars: Hom Nin (HN) rice and Luem Pua (LP) glutinous rice. Both rice cultivars housed the same amount of endophytic actinobacteria (33 isolates each). Microbispora (76%) and Streptomyces (73%) were the predominant endophytic actinobacteria of LP glutinous rice and HN rice, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!