Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Subduction interface thermal structure changes drastically within the first few million years of underthrusting (i.e., ). Metamorphic soles beneath ophiolites record snapshots of dynamic conditions and mechanical coupling during subduction infancy. Beneath the Samail Ophiolite (Oman), the sole comprises structurally higher high-temperature (HT) and lower low-temperature (LT) units. This inverted metamorphic gradient has been attributed to evolving metamorphic Pressure-Temperature (P-T) conditions during infancy; however, peak P-T and timing of LT sole subduction are poorly constrained. Oman Drilling Project core BT-1B sampled the base of the ophiolite in a location lacking the HT sole. Metasedimentary and meta-mafic samples collected from 104 m of core reveal that the LT sole subducted to similar peak P as HT rocks preserved elsewhere in Oman, but experienced ∼300°C lower peak T. Prograde fabrics record Si-in-phengite and amphibole chemistries consistent with peak P-T of ∼7-10 kbar and ∼450-550°C in the epidote-amphibolite facies. Retrograde fabrics record a transition from near-pervasive ductile to localized brittle strain under greenschist facies conditions. Titanite U-Pb ages ( = 2) constrain timing of peak LT sole subduction to ∼91 Ma (post-dating initial HT sole subduction by ∼12-13 Myr) and dynamic retrogression through ∼90 Ma. Combined with existing geo/thermo-chronology, our results support a model of protracted subduction and accretion while the infant subduction zone experienced multi-phase, slow-fast-slow cooling. Temporal overlap of HT sole cooling (rehydration?) and ophiolite formation suggests that cooling may lead to interface weakening, facilitating upper-plate extension and spreading. The LT sole formed in a rapidly-refrigerating forearc after ophiolite formation and may reflect the transition to self-sustaining subduction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9285456 | PMC |
http://dx.doi.org/10.1029/2021JB021702 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!