The epithelial-to-mesenchymal transition (EMT) is a critical process by which cancer cells acquire malignant features. However, the molecular mechanism and functional implications of EMT and the mesenchymal-to-epithelial transition (MET) in tumor progression remain elusive. In this study, we established two aggressive cancer cell lines from the human oral cancer cell line SAS, mesenchymal-like SAS-m4 and epithelial-like SAS-δ. SAS-δ is a revertant cell obtained by inducing MET in SAS-m4. SAS-δ, but not SAS-m4, exhibited abnormal cell growth, including piled-up overgrowth and invasive tumor formation in the tongues of nude mice, suggesting that SAS-δ represented more advanced cancer cells than the parental SAS cells. EMT-related transcriptional factor SLUG is phosphorylated at T208 and partly stabilized by the Hippo pathway kinases, LATS1 and LATS2. Depletion of SLUG promoted the invasive activity of SAS-δ by increasing the protein levels of LATS1/2 and the proportion of the phosphorylated form among total SLUG protein. Our results suggest that the LATS1/2-SLUG axis regulates the transition of SAS cells to the advanced stage via repeated switching between EMT and MET. Therefore, an anti-SLUG-pT208 antibody would be valuable not alone as a malignant tumor marker antibody but also as a prognostic tool for patients with malignant disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9300623PMC
http://dx.doi.org/10.1038/s41598-022-16667-5DOI Listing

Publication Analysis

Top Keywords

cancer cells
12
advanced stage
8
oral cancer
8
cancer cell
8
sas cells
8
cancer
5
cells
5
sas-δ
5
lats kinases
4
slug
4

Similar Publications

Recently, we demonstrated that the oncolytic Coxsackievirus B3 (CVB3) strain PD-H can be efficiently adapted to resistant colorectal cancer cells through dose-dependent passaging in colorectal cancer cells. However, the method is time-consuming, which limits its clinical applicability. Here, we investigated whether the manufacturing time of the adapted virus can be reduced by replacing the dose-based passaging with volume-based passaging.

View Article and Find Full Text PDF

Circulating MicroRNAs Related to Arterial Stiffness in Adults with HIV Infection.

Viruses

December 2024

1st Internal Medicine Department, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 55436 Thessaloniki, Greece.

People with HIV (PWH) have an elevated risk of cardiovascular disease compared to those without HIV. This study aimed to investigate the relative serum expression of microRNAs (miRNAs) associated with arterial stiffness, a significant marker of cardiovascular disease. A total of 36 male PWH and 36 people without HIV, matched for age, body mass index, pack years, and dyslipidemia, were included in the study.

View Article and Find Full Text PDF

This study evaluates the oncolytic potential of the Moscow strain of reovirus against human metastatic melanoma and glioblastoma cells. The Moscow strain effectively infects and replicates within human melanoma cell lines and primary glioblastoma cells, while sparing non-malignant human cells. Infection leads to the selective destruction of neoplastic cells, mediated by functional viral replication.

View Article and Find Full Text PDF

Achieving the precise targeting of lentiviral vectors (LVs) to specific cell populations is crucial for effective gene therapy, particularly in cancer treatment where the modulation of the tumor microenvironment can enhance anti-tumor immunity. Programmed cell death protein 1 (PD-1) is overexpressed on activated tumor-infiltrating T lymphocytes, including regulatory T cells that suppress immune responses via FOXP3 expression. We developed PD1-targeted LVs by incorporating the anti-PD1 nanobody nb102c3 into receptor-blinded measles virus H and VSV-G glycoproteins.

View Article and Find Full Text PDF

Vesicular stomatitis virus (VSV) represents a significant advancement in therapeutic medicine, offering unique molecular and cellular characteristics that make it exceptionally suitable for medical applications. The bullet-shaped morphology, RNA genome organization, and cytoplasmic replication strategy provide fundamental advantages for both vaccine development and oncolytic applications. VSV's interaction with host cells through the low-density lipoprotein receptor (LDL-R) and its sophisticated transcriptional regulation mechanisms enables precise control over therapeutic applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!