The E3 ubiquitin ligase MG53 inhibits hepatocellular carcinoma by targeting RAC1 signaling.

Oncogenesis

Shandong Provincial Key Laboratory of Infection & Immunology, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Immunology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, Jinan, 250012, China.

Published: July 2022

AI Article Synopsis

  • * The study reveals that MG53, an E3 ubiquitin ligase, inhibits RAC1 by promoting its ubiquitination at a specific lysine residue, thereby reducing its activity in HCC cells.
  • * By suppressing RAC1 and its associated signaling pathways, MG53 not only curtails malignant behaviors in HCC but also enhances the effectiveness of the treatment drug sorafenib, suggesting its potential as a therapeutic target.

Article Abstract

Ras-related C3 botulinum toxin substrate 1 (RAC1) overexpressiosn and hyperactivation are correlated with aggressive growth and other malignant characteristics in a wide variety of cancers including hepatocellular carcinoma (HCC). However, the regulatory mechanism of RAC1 expression and activation in HCC is not fully understood. Here, we demonstrated that E3 ubiquitin ligase MG53 (also known as tripartite motif 72, TRIM72) acted as a direct inhibitor of RAC1, and it catalyzed the ubiquitination of RAC1 and further inhibited RAC1 activity in HCC cells. Mechanistically, MG53 directly bound with RAC1 through its coiled-coil domain and suppressed RAC1 activity by catalyzing the Lys48 (K48)-linked polyubiquitination of RAC1 at Lys5 residue in HCC cells. We further demonstrated that MG53 significantly suppressed the malignant behaviors of HCC cells and enhanced the chemosensitivity of HCC cells to sorafenib treatment by inhibiting RAC1-MAPK signaling axis. In summary, we identified MG53 as a novel RAC1 inhibitor and tumor suppressor in HCC, and it suppressed HCC progression by inducing K48-linked polyubiquitination of RAC1 and further inhibiting the RAC1-MAPK signaling. Altogether, our investigation provided a new therapeutic strategy for RAC1 overactivated tumors by modulating MG53.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9300626PMC
http://dx.doi.org/10.1038/s41389-022-00414-6DOI Listing

Publication Analysis

Top Keywords

hcc cells
16
rac1
12
ubiquitin ligase
8
ligase mg53
8
hepatocellular carcinoma
8
hcc
8
rac1 activity
8
k48-linked polyubiquitination
8
polyubiquitination rac1
8
inhibiting rac1-mapk
8

Similar Publications

Lenvatinib, an approved first-line regimen, has been widely applied in hepatocellular carcinoma (HCC). However, clinical response towards Lenvatinib was limited, emphasizing the importance of understanding the underlying mechanism of its resistance. Herein, we employed integrated bioinformatic analysis to identify calpain-2 (CAPN2) as a novel key regulator for Lenvatinib resistance in HCC, and its expression greatly increased in both Lenvatinib-resistant HCC cell lines and clinical samples.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is an aggressive malignancy with poor prognosis. LncRNA MAPKAPK5-AS1 is a potential oncogene and contributes to HCC cell malignant proliferation. This study explores the role of MAPKAPK5-AS1 carried by carcinoma-associated fibroblasts-derived extracellular vesicles (CAF-EVs) in HCC cell proliferation.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is a cancer caused by inflammation, which affects the immune response and treatment outcomes. Finding new immune-related targets could improve HCC immunotherapy. New research suggests that TMEM family proteins can act as either tumor suppressors or oncogenes, but the role of TMEM101 in HCC development is unclear.

View Article and Find Full Text PDF

This study aimed to establish and validate a multiparameter prediction model for Ki67 expression in hepatocellular carcinoma (HCC) patients while also exploring its potential to predict the one-year recurrence risk. The clinical, pathological, and imaging data of 83 patients with HCC confirmed by postoperative pathology were analyzed, and the patients were randomly divided into a training set (n = 58) and a validation set (n = 25) at a ratio of 7:3. All patients underwent a magnetic resonance imaging (MRI) scan that included multi-b value diffusion-weighted scanning before surgery, and quantitative parameters were obtained via intravoxel incoherent motion (IVIM) and diffusion kurtosis (DKI) models.

View Article and Find Full Text PDF

Despite significant advancements in cancer immunotherapy, many patients continue to respond poorly. Novel therapeutic strategies and drugs are urgently needed. Here, we found that CYP2E1 is upregulated in M2 macrophages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!