A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Melatonin treatment improves cognitive deficits by altering inflammatory and neurotrophic factors in the hippocampus of obese mice. | LitMetric

Overweight and obesity are associated with an increased risk of developing dementia and cognitive deficits. Neuroinflammation is one of the most important mechanisms behind cognitive impairment in obese patients. In recent years, the neuroendocrine hormone melatonin has been suggested to have therapeutic effects for memory decline in several neuropsychiatric and neurological conditions. However, the effects of melatonin on cognitive function under obesity conditions still need to be clarified. The purpose of this study was to determine whether melatonin treatment can improve cognitive impairment in obese mice. To this end, male C57BL6 mice were treated with a high-fat diet (HFD) for 20 weeks to induce obesity. The animal received melatonin for 8 weeks. Cognitive functions were evaluated using the Y maze, object recognition test, and the Morris water maze. We measured inflammatory cytokines including tumor necrosis factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-17A, and brain-derived neurotrophic factor (BDNF) in the hippocampus of obese mice. Our results show that HFD-induced obesity significantly impaired working, spatial and recognition memory by increasing IFN-γ and IL-17A and decreasing BDNF levels in the hippocampus of mice. On the other hand, melatonin treatment effectively improved all cognitive impairments and reduced TNF-α, IFN-γ, and IL-17A and elevated BDNF levels in the hippocampus of obese mice. Taken together, this study suggests that melatonin treatment could have a beneficial role in the treatment of cognitive impairment in obesity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.physbeh.2022.113919DOI Listing

Publication Analysis

Top Keywords

melatonin treatment
16
obese mice
16
hippocampus obese
12
cognitive impairment
12
cognitive
8
cognitive deficits
8
impairment obese
8
ifn-γ il-17a
8
bdnf levels
8
levels hippocampus
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!