PTEN and LKB1 are intimately associated with gastrointestinal tumorigenesis. Mutations of PTEN or LKB1 lead to Cowden syndrome and Peutz-Jeghers syndrome characterized by development of gastrointestinal polyps. However, the cells of origin of these polyps and underlying mechanism remain unclear. Here, we reveal that PTEN or LKB1 deficiency in Gli1+ gut mesenchymal cells, but not intestinal epithelium, drives polyp formation histologically resembling polyposis in human patients. Mechanistically, although PTEN and LKB1 converge to regulate mTOR/AKT signaling in various tumor contexts, we find that mTOR is essential for PTEN-deletion-induced polyp formation but is largely dispensable for polyposis induced by mesenchymal LKB1 deficiency. Altogether, our studies identify Gli1-expressing mesenchymal cells as a common cell of origin for polyposis associated with PTEN and LKB1 and reveal their engagement of different downstream pathways in gut mesenchyme to suppress gastrointestinal tumorigenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9764383 | PMC |
http://dx.doi.org/10.1016/j.celrep.2022.111125 | DOI Listing |
Autophagy
August 2024
Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA.
Macroautophagy/autophagy has previously been regarded as simply a way for cells to deal with nutrient emergency. But explosive work in the last 15 years has given increasingly new knowledge to our understanding of this process. Many of the functions of autophagy that are unveiled from recent studies, however, cannot be reconciled with this conventional view of cell survival but, instead, point to autophagy being integrally involved at a deeper level of cell biology, playing a critical role in maintaining homeostasis and promoting an integrated stress/immune response.
View Article and Find Full Text PDFBackground: To identify patients most likely to respond to everolimus, a mammalian target of rapamycin (mTOR) inhibitor, a prospective biomarker study was conducted in hormone receptor-positive endocrine-resistant metastatic breast cancer patients treated with exemestane-everolimus therapy.
Methods: Metastatic tumor biopsies were processed for immunohistochemical staining (p4EBP1, PTEN, pAKT, LKB1, and pS6K). ESR1, PIK3CA and AKT1 gene mutations were detected by NGS.
Cancers (Basel)
December 2023
Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
The LKB1 and PTEN genes are critical in gastric cancer (G.C.) development.
View Article and Find Full Text PDFCancers (Basel)
November 2023
Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
Reprogramming of fatty acid metabolism promotes cell growth and metastasis through a variety of processes that stimulate signaling molecules, energy storage, and membrane biosynthesis in endometrial cancer. Oleic acid is one of the most important monounsaturated fatty acids in the human body, which appears to have both pro- and anti-tumorigenic activities in various pre-clinical models. In this study, we evaluated the potential anti-tumor effects of oleic acid in endometrial cancer cells and the mouse model of endometrial cancer.
View Article and Find Full Text PDFMol Cancer
August 2023
Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria.
Prostate cancer (PCa) is a common and fatal type of cancer in men. Metastatic PCa (mPCa) is a major factor contributing to its lethality, although the mechanisms remain poorly understood. PTEN is one of the most frequently deleted genes in mPCa.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!