Direct type I interferon signaling in hepatocytes controls malaria.

Cell Rep

Department of Cellular Biology, University of Georgia, Athens, GA, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA. Electronic address:

Published: July 2022

Malaria is a devastating disease impacting over half of the world's population. Plasmodium parasites that cause malaria undergo obligatory development and replication in hepatocytes before infecting red blood cells and initiating clinical disease. While type I interferons (IFNs) are known to facilitate innate immune control to Plasmodium in the liver, how they do so has remained unresolved, precluding the manipulation of such responses to combat malaria. Utilizing transcriptomics, infection studies, and a transgenic Plasmodium strain that exports and traffics Cre recombinase, we show that direct type I IFN signaling in Plasmodium-infected hepatocytes is necessary to control malaria. We also show that the majority of infected hepatocytes naturally eliminate Plasmodium infection, revealing the potential existence of anti-malarial cell-autonomous immune responses in such hepatocytes. These discoveries challenge the existing paradigms in Plasmodium immunobiology and are expected to inspire anti-malarial drugs and vaccine strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9422951PMC
http://dx.doi.org/10.1016/j.celrep.2022.111098DOI Listing

Publication Analysis

Top Keywords

direct type
8
hepatocytes
5
malaria
5
plasmodium
5
type interferon
4
interferon signaling
4
signaling hepatocytes
4
hepatocytes controls
4
controls malaria
4
malaria malaria
4

Similar Publications

Boosting the catalytic efficiency of UGT51 for efficient production of rare ginsenoside Rh2.

Folia Microbiol (Praha)

January 2025

Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.

Ginsenoside Rh2(S) is well-known for its therapeutic potential against diverse conditions, including some cancers, inflammation, and diabetes. The enzymatic activity of uridine diphosphate glycosyltransferase 51 (UGT51) from Saccharomyces cerevisiae plays a pivotal role in the glycosylation process between UDP-glucose (donor) and protopanaxadiol (acceptor), to form ginsenoside Rh2. However, the catalytic efficiency of the UGT51 has remained a challenging task.

View Article and Find Full Text PDF

Hypertension, dyslipidemia, and type 2 diabetes are highly prevalent and poorly controlled cardiometabolic diseases in the Middle East. Therapeutic non-adherence and therapeutic inertia are major contributors to this suboptimal disease control. Regardless of the cardiometabolic disease, evidence-based solutions may be used to improve therapeutic non-adherence and overcome inertia, and thereby help to alleviate the heavy burden of cardiovascular disease in the Middle East.

View Article and Find Full Text PDF

Myelodysplastic syndromes (MDS) are age-related diseases characterized by bone marrow (BM) dysfunction and an increased risk of developing acute leukemia. While there is growing evidence highlighting the crucial role of the BM microenvironment (BMME) in MDS, the specific influence of inflammation on BMME changes, as well as the potential benefits of targeting cytokines therapeutically, remain to be elucidated. We previously found interleukin-1 (IL-1) to be a driver of aging phenotypes of BMME and hematopoietic stem and progenitor cells (HSPCs).

View Article and Find Full Text PDF

Background: After-hours pediatric anesthesia may pose increased risks, with a heightened potential for sudden cardio-respiratory decline. While mortality rates are low in Australia and New Zealand, critical events and morbidity occur more frequently and present ongoing challenges. However, little is known about how trainees are supervised during these high-risk periods.

View Article and Find Full Text PDF

Purpose: The aim of this study was to evaluate the efficacy and safety of the Ahmed glaucoma valve in pediatric patients with refractory glaucoma.

Methods: A comprehensive literature search was conducted across multiple major databases, including PubMed, Embase, the Cochrane Library of Systematic Reviews, Science Direct, China's National Knowledge Infrastructure, and the Wanfang database. We retrieved studies published before December 2022 that met the inclusion criteria, including clinical controlled trials (randomized controlled trials) and clinical noncontrolled trials (non-randomized controlled trials) on the use of Ahmed glaucoma valve in pediatric patients with refractory glaucoma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!