Soil compaction represents a major agronomic challenge, inhibiting root elongation and impacting crop yields. Roots use ethylene to sense soil compaction as the restricted air space causes this gaseous signal to accumulate around root tips. Ethylene inhibits root elongation and promotes radial expansion in compacted soil, but its mechanistic basis remains unclear. Here, we report that ethylene promotes abscisic acid (ABA) biosynthesis and cortical cell radial expansion. Rice mutants of ABA biosynthetic genes had attenuated cortical cell radial expansion in compacted soil, leading to better penetration. Soil compaction-induced ethylene also up-regulates the auxin biosynthesis gene . Mutants lacking OsYUC8 are better able to penetrate compacted soil. The auxin influx transporter OsAUX1 is also required to mobilize auxin from the root tip to the elongation zone during a root compaction response. Moreover, mutants penetrate compacted soil better than the wild-type roots and do not exhibit cortical cell radial expansion. We conclude that ethylene uses auxin and ABA as downstream signals to modify rice root cell elongation and radial expansion, causing root tips to swell and reducing their ability to penetrate compacted soil.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9335218 | PMC |
http://dx.doi.org/10.1073/pnas.2201072119 | DOI Listing |
Front Plant Sci
January 2025
College of Resources and Environment, Xinjiang Agricultural University, Urumqi, China.
In this study, the improvement effect of different organic substances on compacted cohesive soil in southern Xinjiang was discussed, with emphasis on the influence of different organic substances on soil chemical properties and microorganisms, so as to determine the best carbon source input and provide theoretical support for the rational utilization of organic materials in southern Xinjiang. Field experiments were conducted to evaluate the effects of farm fertilizer, biochar, commercial organic fertilizer, microbial fertilizer and mineral potassium humate on physical and chemical properties of viscous soil, agronomic properties and yield of cotton, with three gradients for each organic fertilizer. The results showed that: (1) all organic fertilizers improved soil structure, among which farm fertilizer significantly reduced soil bulk density and salinity, increased soil organic matter, total nitrogen and available nutrients, and thus increased cotton height, stem diameter and yield.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Civil Engineering, Engineering Faculty, Firat University, 23100 Elazig, Türkiye.
In this study, the usability of construction and demolition waste (CDW) aggregates as filling when stabilized with alkaline activator solution (AAS) and blast furnace slag (BFS) was investigated. The initial stage of this study involved determining the engineering properties of CDW by laboratory experiments. In the next stage, modified Proctor tests were performed to investigate the compaction behavior of CDW, to which 5% to 30% BFS was added with water or AAS.
View Article and Find Full Text PDFSci Rep
January 2025
College of Civil Engineering and Architecture, China Three Gorges University, Yichang, 443002, Hubei, China.
With the rapid development of infrastructure construction on oceanic reefs, calcareous sand, as the primary medium of these reefs, exhibits unique physical and mechanical properties such as high void ratio, low strength, and susceptibility to particle breakage. These characteristics reduce the bearing capacity and stability of pile foundations in calcareous sand foundations. This study investigates the bearing characteristics of high-strength preloaded expansion piles in calcareous sand foundations, taking into account the influence of HSCA high-performance expansion agent dosage through a series of indoor model tests and in-situ tests.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Heilongjiang Transportation Information and Science Research Center, Harbin 150080, China.
The degradation of concrete caused by sulfate attack poses a significant challenge to its durability. Using nanomaterials to enhance the mechanical and durability properties of concrete is a promising solution. A study of the durability of nano-alumina (NA)-modified concrete by sulfate erosion was carried out.
View Article and Find Full Text PDFSci Rep
January 2025
College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, Shandong Province, China.
The unsaturated hydraulic conductivity (K) is one of the most important properties for evaluating moisture and gas migration in soil. However, the precise measurement of K in the laboratory often requires considerable time and economic costs. Currently, the most commonly used method to calculate K is to obtain it from the soil-water characteristic curve (SWCC) and saturated hydraulic conductivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!