Accurate Molecular-Orbital-Based Machine Learning Energies via Unsupervised Clustering of Chemical Space.

J Chem Theory Comput

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.

Published: August 2022

We introduce an unsupervised clustering algorithm to improve training efficiency and accuracy in predicting energies using molecular-orbital-based machine learning (MOB-ML). This work determines clusters via the Gaussian mixture model (GMM) in an entirely automatic manner and simplifies an earlier supervised clustering approach [ 2019, 15, 6668] by eliminating both the necessity for user-specified parameters and the training of an additional classifier. Unsupervised clustering results from GMM have the advantages of accurately reproducing chemically intuitive groupings of frontier molecular orbitals and exhibiting improved performance with an increasing number of training examples. The resulting clusters from supervised or unsupervised clustering are further combined with scalable Gaussian process regression (GPR) or linear regression (LR) to learn molecular energies accurately by generating a local regression model in each cluster. Among all four combinations of regressors and clustering methods, GMM combined with scalable exact GPR (GMM/GPR) is the most efficient training protocol for MOB-ML. The numerical tests of molecular energy learning on thermalized data sets of drug-like molecules demonstrate the improved accuracy, transferability, and learning efficiency of GMM/GPR over other training protocols for MOB-ML, i.e., supervised regression clustering combined with GPR (RC/GPR) and GPR without clustering. GMM/GPR also provides the best molecular energy predictions compared with ones from the literature on the same benchmark data sets. With a lower scaling, GMM/GPR has a 10.4-fold speedup in wall-clock training time compared with scalable exact GPR with a training size of 6500 QM7b-T molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.2c00396DOI Listing

Publication Analysis

Top Keywords

unsupervised clustering
16
molecular-orbital-based machine
8
machine learning
8
clustering
8
clustering combined
8
combined scalable
8
scalable exact
8
exact gpr
8
molecular energy
8
data sets
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!