Purpose: To examine central corneal thickness (CCT) changes during in vivo rose bengal-green light corneal cross-linking (RG-CXL) and compare the CXL efficacy of different rose bengal formulations.

Methods: After epithelium removal, the right eyes of rabbits were immersed in rose bengal solution prepared by different solvents (water, phosphate buffered saline, dextran, and hydroxypropyl methylcellulos [HPMC]) for 2 or 20 minutes, then the rose bengal distribution in the corneal stroma was analyzed by confocal fluorescence detection. During the RG-CXL process, the CCT was measured at seven time points. The left eyes served as the untreated control group. Corneal enzymatic resistance and corneal biomechanics were tested to compare the RG-CXL efficacy.

Results: The rose bengal infiltration depths were 120 and 200 µm for the 2- and 20-minute groups, respectively. CCT increased significantly after infiltration, then decreased significantly in the first 200 seconds of irradiation and decreased slowly for the next 400 seconds. The CCT of the 20-minute groups was significantly thicker than that of the 2-minute groups ( < .0001). All RG-CXL treatments improved the corneal enzymatic resistance and corneal biomechanics, with the effects being greater in the 20-minute groups. The inclusion of 1.1% HPMC in the rose bengal formulation helped to maintain CCT during irradiation while not affecting either the infiltration of rose bengal or the efficacy of RG-CXL.

Conclusions: Within the range studied, RG-CXL efficacy increased with infiltration time. The incorporation of a 20-minute infiltration of 0.1% rose bengal-1.1% HPMC into the RG-CXL procedure may further improve the safety of the treatment and its prospects for clinical use. .

Download full-text PDF

Source
http://dx.doi.org/10.3928/1081597X-20220601-03DOI Listing

Publication Analysis

Top Keywords

rose bengal
28
20-minute groups
12
corneal
9
rose
9
corneal thickness
8
efficacy rose
8
light corneal
8
corneal cross-linking
8
corneal enzymatic
8
enzymatic resistance
8

Similar Publications

Antibodies to β2-glycoprotein I (β2GPI) cause thrombosis in antiphospholipid syndrome, however the role of β2GPI in coagulation in vivo is not understood. To address this issue, we developed β2GPI-deficient mice (Apoh-/-) by deleting exon 2 and 3 of Apoh using CRISPR/Cas9 and compared the development of thrombosis in wild-type (WT) and Apoh-/- mice using rose bengal and FeCl3-induced carotid thrombosis, laser-induced cremaster arteriolar injury, and inferior vena cava (IVC) stasis models. We also compared tail bleeding times and activation of platelets from WT and Apoh-/- mice in the absence and presence of β2GPI.

View Article and Find Full Text PDF

Purpose: Rose Bengal Photodynamic Therapy (RB-PDT) offers dual therapeutic benefits by enhancing corneal stiffness and providing antibacterial activity, presenting significant potential for patients with keratoconus complicated by keratitis. Our purpose was to assess the effect of rose bengal photodynamic therapy (RB-PDT) on the expression of pro-inflammatory cytokines and chemokines, as well as on extracellular matrix (ECM)-related molecules, in lipopolysaccharide (LPS)-induced inflammation of keratoconus human corneal fibroblasts (KC-HCFs). Additionally, the involvement of the mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) signaling pathways which are downstream of the Toll-like receptor 4 (TLR4) pathway were examined.

View Article and Find Full Text PDF

Introduction: The successful diagnosis and treatment of early-stage breast cancer enhances the quality of life of patients. As a promising alternative to recently developed magnetic resonance imaging-guided radiotherapy, we proposed fluorescence molecular imaging-guided photodynamic therapy (FMI-guided PDT), which requires no expensive equipment. In the FMI simulations, ICG-C11 which has emission peaks at near-infrared wavelengths was used as the FMI agent.

View Article and Find Full Text PDF

Neurological function is restored post-ischemic stroke in zebrafish, with aging exerting a deleterious effect on its pathology.

Brain Res Bull

January 2025

Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan; Research Institute of Disaster Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan; Health and Disease Omics Center, Chiba University, Chiba, Japan. Electronic address:

Ischemic stroke (IS) is a pathological condition characterized by the cessation of blood flow due to factors such as thrombosis, inflicting severe damage to the cranial nervous system and resulting in numerous disabilities including memory impairments and hemiplegia. Despite the critical nature of this condition, therapeutic options remain limited, with a pressing challenge being the development of treatments aimed at restoring neurological function. In this study, we leveraged zebrafish, renowned for their exceptional regenerative capabilities, to analyze the pathology of IS and the subsequent recovery process.

View Article and Find Full Text PDF

The two obstacles for treating glioma are the skull and the blood brain-barrier (BBB), the first of which forms a physical shield that increases the difficulties of traditional surgery or radiotherapy, while the latter prevents antitumor drugs reaching tumor sites. To conquer these issues, we take advantage of the high penetrating ability of sonodynamic therapy (SDT), combined with a novel nanocomplex that can easily pass the BBB. Through ultrasonic polymerization, the amphiphilic peptides (CGRRGDS) were self-assembled as a spherical shell encapsulating a sonosensitizer Rose Bengal (RB) and a plant-derived compound, sulforaphane (SFN), to form the nanocomplex SFN@RB@SPM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!