Underwater visibility constrains the foraging behaviour of a diving pelagic seabird.

Proc Biol Sci

School of Biological, Environmental and Earth Sciences, University College Cork, Cork T23 N73K, Ireland.

Published: July 2022

Understanding the sensory ecology of species is vital if we are to predict how they will function in a changing environment. Visual cues are fundamentally important for many predators when detecting and capturing prey. However, many marine areas have become more turbid through processes influenced by climate change, potentially affecting the ability of marine predators to detect prey. We performed the first study that directly relates a pelagic seabird species's foraging behaviour to oceanic turbidity. We collected biologging data from 79 foraging trips and 5472 dives of a visually dependent, pursuit-diving seabird, the Manx shearwater (). Foraging behaviour was modelled against environmental variables affecting underwater visibility, including water turbidity, cloud cover and solar angle. Shearwaters were more likely to initiate area-restricted search and foraging dives in clearer waters. Underwater visibility also strongly predicted dive rate and depth, suggesting that fine-scale prey capture was constrained by the detectability of prey underwater. Our novel use of dynamic descriptors of underwater visibility suggests that visual cues are vital for underwater foraging. Our data indicate that climate change could negatively impact seabird populations by making prey more difficult to detect, compounded by the widely reported effects of reduced prey populations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9277241PMC
http://dx.doi.org/10.1098/rspb.2022.0862DOI Listing

Publication Analysis

Top Keywords

underwater visibility
16
foraging behaviour
12
pelagic seabird
8
visual cues
8
climate change
8
underwater
6
foraging
6
prey
6
visibility constrains
4
constrains foraging
4

Similar Publications

Underwater simultaneous localization and mapping (SLAM) has significant challenges due to the complexities of underwater environments, marked by limited visibility, variable conditions, and restricted global positioning system (GPS) availability. This study provides a comprehensive analysis of sensor fusion techniques in underwater SLAM, highlighting the amalgamation of proprioceptive and exteroceptive sensors to improve UUV navigational accuracy and system resilience. Essential sensor applications, including inertial measurement units (IMUs), Doppler velocity logs (DVLs), cameras, sonar, and LiDAR (light detection and ranging), are examined for their contributions to navigation and perception.

View Article and Find Full Text PDF

CuO Nanobelt Array-Based Omnidirectional UV-Visible-NIR Photoelectrochemical Photodetectors.

ACS Appl Mater Interfaces

December 2024

College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China.

Photoelectrochemical photodetectors (PEC PDs) are promising in underwater optoelectronic devices because of their low cost, good sensitivity, and self-powered characteristics. However, achieving high-performance omnidirectional visible PEC PDs using seawater as the electrolyte is still challenging, hindering their practical application. This work successfully synthesized CuO nanobelt arrays (NAs) on a linear copper wire via a low-temperature solution method with an annealing process.

View Article and Find Full Text PDF

Underwater images hold immense value for various fields, including marine biology research, underwater infrastructure inspection, and exploration activities. However, capturing high-quality images underwater proves challenging due to light absorption and scattering leading to color distortion, blue green hues. Additionally, these phenomena decrease contrast and visibility, hindering the ability to extract valuable information.

View Article and Find Full Text PDF

Mixed Metal Oxide Heterojunction for High-Performance Self-Powered Ultraviolet Photodetection.

Small

December 2024

College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China.

The field of photoelectrochemical-type (PEC) ultraviolet (UV) photodetectors has witnessed swift progression due to their facile fabrication processes and self-powered function. The realization of high-performance and self-powered PEC UV photodetectors is attractive and challenging. In this study, the application of ZnAl mixed metal oxide (MMO) heterojunctions in self-powered PEC UV photodetectors is introduced for the first time.

View Article and Find Full Text PDF

Development of a novel 'In-Water Mass Casualty Triage Tool'.

BMJ Mil Health

November 2024

Extreme Environments Laboratory, University of Portsmouth, Portsmouth, UK.

The number of in-water mass casualty incidents has increased in recent years and provides significant challenges to rescuers. Existing triage systems require the rescue of immersed (in water) casualties before triage is undertaken. A tool that enables triage to be undertaken rescue, and therefore the prioritisation of that rescue, should improve the efficiency, efficacy and survival rate associated with the management of such incidents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!