Hepatocellular carcinoma (HCC) develops predominantly in the inflammatory environment of a cirrhotic liver caused by hepatitis, toxin exposure, or chronic liver disease. A targeted therapeutic approach is required to enable cancer killing without causing toxicity and liver failure. Poly(beta-amino-ester) (PBAE) nanoparticles (NPs) were used to deliver a completely CpG-free plasmid harboring mutant herpes simplex virus type 1 sr39 thymidine kinase (sr39) DNA to human HCC cells. Transfection with sr39 enables cancer cell killing with the prodrug ganciclovir and accumulation of 9-(4-F-fluoro-3-hydroxymethylbutyl)guanine (F-FHBG) for in vivo imaging. Targeting was achieved using a CpG-free human alpha fetoprotein (AFP) promoter (CpGf-AFP-sr39). Expression was restricted to AFP-producing HCC cells, enabling selective transfection of orthotopic HCC xenografts. CpGf-AFP-sr39 NP treatment resulted in 62% reduced tumor size, and therapeutic gene expression was detectable by positron emission tomography (PET). This systemic nanomedicine achieved tumor-specific delivery, therapy, and imaging, representing a promising platform for targeted treatment of HCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9299552PMC
http://dx.doi.org/10.1126/sciadv.abo6406DOI Listing

Publication Analysis

Top Keywords

hepatocellular carcinoma
8
hcc cells
8
hcc
5
polymeric nanoparticles
4
nanoparticles dual-targeted
4
dual-targeted theranostic
4
theranostic gene
4
gene delivery
4
delivery hepatocellular
4
carcinoma hepatocellular
4

Similar Publications

Background: We aim to comprehensively analyze and validate the prognostic efficacy of tetraspanin 4 (TSPAN4) and several other migrasome-related markers in hepatocellular carcinoma (HCC).

Methods: The expression, diagnostic, and prognostic efficacy of five migrasome-related genes in HCC were analyzed using several databases. Five pairs of adjacent non-tumor tissues and HCC tissues were used to validate the expression.

View Article and Find Full Text PDF
Article Synopsis
  • Hepatitis B virus (HBV) is a major global health concern linked to liver disease and cancer, with research focusing on genetic factors that affect its evolution.
  • Recent studies highlighted the ECM1 gene, specifically two polymorphisms (rs3834087 and rs3754217), which may influence HBV pathogenesis, particularly in an African cohort analyzed in this research.
  • The study found that the heterozygous genotype of rs3754217 appears to protect against chronic hepatitis, suggesting that certain genetic variations may impact the severity of the disease in infected individuals.
View Article and Find Full Text PDF

Berberine (BBR), an isoquinoline alkaloid abundant in Coptis chinensis, exhibits anti-tumor and hypoglycemic properties. The regulation of tumor cell homeostasis and metabolism is greatly influenced by Hypoxia-inducible factor-1α (HIF-1α). This research aims to elucidate whether BBR inhibits the progression of hepatocellular carcinoma (HCC) by modulating HIF-1α expression.

View Article and Find Full Text PDF

Objective To explore the clinical and immunological significance of CCDC97 in hepatocellular carcinoma (HCC). Methods Clinical data and RNA sequencing results from HCC patients were retrieved from TCGA and ICGC databases. Bioinformatics analysis and in vitro experiments were performed to investigate the role of CCDC97 in HCC.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the role of miR-483-5p in regulating the overexpression of IGF2 and H19, which are linked to hepatocellular carcinoma (HCC).
  • miR-483-5p enhances IGF2 and H19 expression by binding to their enhancer, activating transcription, and promoting new interactions between the enhancer and gene promoters through chromatin loops.
  • The research highlights that MED1 is crucial in this process, influencing both chromatin structure and the aggressive behavior of HCC cells, indicating potential targets for therapeutic interventions.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!