While the recent advancements of computed tomography (CT) technology have contributed in reducing radiation dose and image noise, an objective evaluation of image quality in patient scans has not yet been established. In this study, we present a patient-specific CT image quality evaluation method that includes fully automated measurements of noise level, structure sharpness, and alteration of structure. This study used the CT images of 120 patients from four different CT scanners reconstructed with three types of algorithm: filtered back projection (FBP), vendor-specific iterative reconstruction (IR), and a vendor-agnostic deep learning model (DLM, ClariCT.AI, ClariPi Inc.). The structure coherence feature (SCF) was used to divide an image into the homogeneous (RH) and structure edge (RS) regions, which in turn were used to localize the regions of interests (ROIs) for subsequent analysis of image quality indices. The noise level was calculated by averaging the standard deviations from five randomly selected ROIs on RH, and the mean SCFs on RS was used to estimate the structure sharpness. The structure alteration was defined by the standard deviation ratio between RS and RH on the subtraction image between FBP and IR or DLM, in which lower structure alterations indicate successful noise reduction without degradation of structure details. The estimated structure sharpness showed a high correlation of 0.793 with manually measured edge slopes. Compared to FBP, IR and DLM showed 34.38% and 51.30% noise reduction, 2.87% and 0.59% lower structure sharpness, and 2.20% and -12.03% structure alteration, respectively, on an average. DLM showed statistically superior performance to IR in all three image quality metrics. This study is expected to contribute to enhance the CT protocol optimization process by allowing a high throughput and quantitative image quality evaluation during the introduction or adjustment of lower-dose CT protocol into routine practice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9299323PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0271724PLOS

Publication Analysis

Top Keywords

image quality
24
structure sharpness
16
quality evaluation
12
structure
11
image
9
fully automated
8
noise level
8
structure alteration
8
fbp dlm
8
lower structure
8

Similar Publications

Purpose: Our study evaluated skeletal muscle mass, function and quality among mild autonomous cortisol secretion (MACS) patients and non-functioning adrenal incidentaloma (NFAI) patients in comparison with the control group without adrenal mass.

Methods: 63 NFAI (49 female, 14 male) and 31 MACS (24 female, 7 male) patients were included in the study. As the control group, 44 patients (31 women, 13 men) who were known to have no radiological adrenal pathology on computed tomography or magnetic resonance imaging performed for other reasons were selected.

View Article and Find Full Text PDF

18F-Sodium Fluoride PET/CT as a Tool to Assess Enthesopathies in X-Linked Hypophosphatemia.

Calcif Tissue Int

January 2025

Endocrinology Department, School of Medicine, Pontificia Universidad Católica de Chile, Av. Diagonal Paraguay 262, Cuarto Piso, Santiago, Chile.

X-linked hypophosphatemia (XLH) is a rare metabolic disorder characterized by elevated FGF23 and chronic hypophosphatemia, leading to impaired skeletal mineralization and enthesopathies that are associated with pain, stiffness, and diminished quality of life. The natural history of enthesopathies in XLH remains poorly defined, partly due to absence of a sensitive quantitative tool for assessment and monitoring. This study investigates the utility of 18F-NaF PET/CT scans in characterizing enthesopathies in XLH subjects.

View Article and Find Full Text PDF

Correlations between spinopelvic parameters and health-related quality of life in degenerative lumbar scoliosis patients before and after long -level fusion surgery.

BMC Musculoskelet Disord

January 2025

Department of Orthopedics, Peking University Third Hospital, No. 49. North Garden Street, Hai Dian District, Beijing, 100191, People's Republic of China.

Background: For degenerative lumbar scoliosis (DLS), prior studies mainly focused on the preoperative relationship between spinopelvic parameters and health-related quality of life (HRQoL), lacking an exhaustive evaluation of the postoperative situation. Therefore, the postoperative parameters most closely bonded with clinical outcomes has not yet been well-defined in DLS patients. The objective of this study was to comprehensively assess the correlation between radiographic parameters and HRQoL before and after surgery, and to identified the most valuable spinopelvic parameters for postoperative curative effect.

View Article and Find Full Text PDF

Although the Transformer architecture has established itself as the industry standard for jobs involving natural language processing, it still has few uses in computer vision. In vision, attention is used in conjunction with convolutional networks or to replace individual convolutional network elements while preserving the overall network design. Differences between the two domains, such as significant variations in the scale of visual things and the higher granularity of pixels in images compared to words in the text, make it difficult to transfer Transformer from language to vision.

View Article and Find Full Text PDF

Functional magnetic resonance imaging (fMRI) has dramatically advanced non-invasive human brain mapping and decoding. Functional near-infrared spectroscopy (fNIRS) and high-density diffuse optical tomography (HD-DOT) non-invasively measure blood oxygen fluctuations related to brain activity, like fMRI, at the brain surface, using more-lightweight equipment that circumvents ergonomic and logistical limitations of fMRI. HD-DOT grids have smaller inter-optode spacing (~ 13 mm) than sparse fNIRS (~ 30 mm) and therefore provide higher image quality, with spatial resolution ~ 1/2 that of fMRI, when using the several source-detector distances (13-40 mm) afforded by the HD-DOT grid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!