AI Article Synopsis

Article Abstract

Heterozygous loss-of-function mutation of the calcium sensing-receptor (CaSR), causes familial hypocalciuric hypercalcemia type 1 (FHH1), a typically benign condition characterized by mild hypercalcemia. In contrast, homozygous mutation of this dimer-forming G-protein coupled receptor manifests as the lethal neonatal severe hyperparathyroidism (NSHPT). To investigate the mechanisms by which CaSR mutations lead to these distinct disease states, we engineered wild-type (WT) and an exon 5-deficient disease-causing mutation, and transfected expression constructs into human embryonic kidney (HEK) cells. WT protein was mainly membrane-expressed whereas the mutant CaSR protein (mCaSR) was confined to the cytoplasm. Co-expression of WT CaSR directed mCaSR to the cell membrane. In assays of CaSR function, increases in extracellular [Ca2+] ([Ca2+]o) increased intracellular [Ca2+] ([Ca2+]i) in cells expressing WT CaSR while the response was reduced in cells co-expressing mutant and WT receptor. Untransfected cells or those expressing mCaSR alone, showed minimal, equivalent responses to increased [Ca2+]o. Immunoprecipitation experiments confirmed an association between mutant and wild-type CaSR. The affinity of the WT CaSR for calcium was three times greater than that of the heterodimer. The maximal functional response to [Ca]o was dependent on localization of CaSR to the membrane level and independent of homo- or heterodimerizations. In summary, these results suggest that heterodimerization of WT and mCaSR receptors, rescues the trafficking defect of the mutant receptors and also reduces the affinity of the WT-mutant heterodimer for [Ca]o. In contrast, the homozygous mutants do not produce functional receptors on cell membrane. These data indicate how substantial differences between signaling of hetero- and homodimeric mutants may lead to profound differences in the severity of disease in heterozygous and homozygous carriers of these mutations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9299317PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0266993PLOS

Publication Analysis

Top Keywords

casr
9
calcium sensing-receptor
8
familial hypocalciuric
8
hypocalciuric hypercalcemia
8
hypercalcemia type
8
contrast homozygous
8
cell membrane
8
cells expressing
8
mutant
5
reduced affinity
4

Similar Publications

Neonatal severe hyperparathyroidism with inactivating calcium sensing receptor (CaSR) mutation (p.I81K).

J Pediatr Endocrinol Metab

January 2025

Department of Pediatric Endocrinology, Antalya Training and Research Hospital, University of Health Sciences, Antalya, Türkiye.

Objectives: Neonatal severe hyperparathyroidism (NSHPT) is a rare condition characterized by inactivating mutations in the calcium-sensing receptor () gene, leading to significant hypercalcemia and related complications.

Case Presentation: We present a case of a six-day-old male infant with weakness, jaundice, and hypotonia, later diagnosed with NSHPT due to a known homozygous mutation (c.242T>A; p.

View Article and Find Full Text PDF

Background: The parathyroid calcium-sensing receptor (CASR) controls the release of parathyroid hormone (PTH) in response to changes in serum calcium levels. Activation of the renal CASR increases urinary calcium excretion and is particularly important when CASR-dependent reductions in PTH fail to lower serum calcium. However, the role of the renal CASR in protecting against hypercalcemia and the direct effects of chronic CASR activation on tubular calcium handling remains to be fully elucidated.

View Article and Find Full Text PDF

Chapter 5: THE ROLE OF GENETICS IN PRIMARY HYPERPARATHYROIDISM.

Ann Endocrinol (Paris)

January 2025

Univ. Lille, Inserm, CHU Lille, U1286 - Infinite, F-59045 Lille Cedex, Department of Biochemistry and Molecular Biology, Lille University Hospital, Lille, France. Electronic address:

Around 10% of cases of primary hyperparathyroidism are thought to be genetic in origin, some of which are part of a syndromic form such as multiple endocrine neoplasia types 1, 2A or 4 or hyperparathyroidism-jaw tumor syndrome, while the remainder are cases of isolated familial primary hyperparathyroidism. Recognition of these genetic forms is important to ensure appropriate management according to the gene and type of variant involved, but screening for a genetic cause is not justified in all patients presenting primary hyperparathyroidism. The indications for genetic analysis have made it possible to propose a decision tree that takes into account whether the presentation is familial or sporadic, syndromic or isolated, patient age, and histopathological type of parathyroid lesion.

View Article and Find Full Text PDF

Diseases affecting bone encompass a spectrum of disorders, from prevalent conditions such as osteoporosis and Paget's disease, collectively impacting millions, to rare genetic disorders including Fibrodysplasia Ossificans Progressiva (FOP). While several classes of drugs, such as bisphosphonates, synthetic hormones, and antibodies, are utilized in the treatment of bone diseases, their efficacy is often curtailed by issues of tolerability and high incidence of adverse effects. Developing therapeutic agents for bone diseases is hampered by the fact that numerous pathways regulating bone metabolism also perform pivotal functions in other organ systems.

View Article and Find Full Text PDF

Backgrounds: The pathophysiology of nephrolithiasis is complex, influenced by both environmental and genetic factors. Calcium is the most prevalent metabolite present in the stone matrix. Stimulating the basolateral calcium sensing receptor (CASR) in the renal tubules leads to an increase in claudin-14 expression, reducing paracellular calcium permeability and increasing urinary Ca excretion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!