For highly efficient heat dissipation of thin electronic devices, development of film materials that exhibit high thermal conductivity in the in-plane direction is desired. In particular, it is important to develop thermally conductive films with large in-plane anisotropy to prevent thermal interference between heat sources in close proximity and to cool in other directions by diffusion. In this study, we developed flexible composite films composed of a uniaxially aligned carbon-fiber filler within a cellulose nanofiber matrix through liquid-phase three-dimensional patterning. The film exhibited a high in-plane thermal conductivity anisotropy of 433%, with combined properties of a thermal conductivity of 7.8 W/mK in the aligned direction and a thermal conductivity of 1.8 W/mK in the in-plane orthogonal direction. This remarkable thermal conductivity and in-plane anisotropy showed the ability to significantly cool powder electroluminescent devices formed on the composite film and also to cool two heat sources in close proximity without thermal interference. In addition, the carbon-fiber filler could be extracted from the composite films by heat treatment at 450 °C and reused as a thermally conductive material.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9335532 | PMC |
http://dx.doi.org/10.1021/acsami.2c09332 | DOI Listing |
Nat Mater
January 2025
Max Planck Institute for Chemical Physics of Solids, Dresden, Germany.
High thermoelectric performance is generally achieved by synergistically optimizing two or even three of the contradictorily coupled thermoelectric parameters. Here we demonstrate magneto-thermoelectric correlation as a strategy to achieve simultaneous gain in an enhanced Seebeck coefficient and reduced thermal conductivity in topological materials. We report a large magneto-Seebeck effect and high magneto-thermoelectric figure of merit of 1.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.
Thermoelectric technology enables the direct and reversible conversion of heat into electrical energy without air pollution. Herein, the stability, electronic structure, and thermoelectric properties of methoxy-functionalized MC(OMe) (M = Sc, Ti, V, Cr, Y, Zr, Nb, Mo, Hf, Ta, and W) were systematically investigated using first-principles calculations and semiclassical Boltzmann transport theory. All MXenes, except those with M = Cr, Mo, and W, can be synthesized by substituting Cl- and Br-functionalized MXenes with deprotonated methanol, with stability governed by the M-O bond strength.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Center for Phononics and Thermal Energy Science, School of Physics Science and Engineering, Tongji University, Shanghai 20092, China.
In contrast to normal diffusion processes, thermal conduction in one-dimensional systems is anomalous. The thermal conductivity is found to vary with the length as κ∼L^{α}(α>0), but there is a long-standing debate on the value α. Here, we present a canonical example of this behavior in polymer-grafted spherical nanoparticle (GNP) melts at fixed grafting density and nanoparticle radius.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China.
We propose a mechanism to obtain chiral phononlike excitations from the bond-dependent magnetoelastic couplings in the absence of out-of-plane magnetization and magnetic fields. By mapping the hybrid excitation to its phononic analog, we reveal the impact of the lattice symmetry on the origin of the chirality. In the example of a triangular lattice ferromagnet, we recognize that the system is equivalent to the class D of topological phonons, and show the tunable chirality and topology by an in-plane magnetic field.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA.
Two-Dimensional transition metal dichalcogenides have been the subject of extensive attention thanks to their unique properties and atomically thin structure. Because of its unprecedented room-temperature magnetic properties, iron-doped MoS (Fe:MoS) is considered the next-generation quantum and magnetic material. It is essential to understand Fe:MoS's thermal behavior since temperature and thermal load/activation are crucial for their magnetic properties and the current nano and quantum devices have been severely limited by thermal management.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!