The current study deals with a reactivity-controlled compression ignition (RCCI) engine working with 1-pentanol as the LRF and JOBD as the HRF. The composition of the pilot fuel includes 20% Jatropha oil and 80% diesel, which nearly matches the heating value and cetane index of petroleum diesel. The research focuses on studying the impact of the pilot fuel injection angle on the engine characteristics at full load conditions, and the pilot fuel injection angle varies from 19, 21, 23, 25, to 27° bTDC at a constant injection pressure of 600 bar. The results revealed that increasing the pilot fuel injection angle increased the engine performance with a 13.36% rise in BTE, a reduction in CO emissions by 11.03%, and a decrease in HC emissions by 9.28% at a pilot fuel injection angle of 25° bTDC at 30% pentanol energy share (BD70P30). On the other hand, NO emissions rise by 11.07%. The results indicate that the performance of the ternary fuelled RCCI engine can be improved by increasing the fuel injection angle of the pilot fuel.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9298171 | PMC |
http://dx.doi.org/10.1007/s11356-022-22039-3 | DOI Listing |
ACS Omega
January 2025
School of Mechanical Engineering, VIT-AP University, Amaravati, Andhra Pradesh 522237, India.
Waste plastic oils (WPOs) can help address the global energy crisis caused by the rapid depletion of fossil fuels, global warming, and strict emission regulations. The present research delves into the intricate interplay of higher alcohol blends in the context of combustion, performance, and emission characteristics within a common rail direct injection engine. In this regard, 1-hexanol has been selected as the blending constituent for the WPO to tackle emission challenges while concurrently reducing dependence on conventional fuel, as it stands out for its enhanced fuel properties compared to lower alcohols.
View Article and Find Full Text PDFJ Glob Health
January 2025
Rural Health Research Institute, Charles Sturt University, Orange, New South Wales, Australia.
Background: Identifying the modifiable risk factors for childhood mortality using population-attributable fractions (PAFs) estimates can inform public health planning and resource allocation in low- and middle-income countries (LMICs). We estimated PAFs for key population-level modifiable risk factors of neonatal, infant, and under-five mortality in LMICs.
Methods: We used the most recent Demographic and Health Survey data sets (2010-22) from 48 LMICs, encompassing 35 sub-Saharan African countries and 13 countries from South and Southeast Asia (n = 506 989).
Langmuir
January 2025
Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London SW7 2BX, United Kingdom.
Engine deposits can reduce performance and increase emissions, particularly for modern direct-injection fuel delivery systems. Surfactants known as deposit control additives (DCAs) adsorb and self-assemble on the surface of deposit precursors to keep them suspended in the fuel. Here, we show how molecular simulations can be used to virtually screen the ability of surfactants to bind to polyaromatic hydrocarbons, comprising a major class of carbonaceous deposits.
View Article and Find Full Text PDFNanoscale
January 2025
Advanced Materials Science Innovation Center, Longmen Laboratory, Luoyang 471003, China.
CO capture and separation from natural and fuel gas are important industrial issues that refer to the control of CO emissions and the purification of target gases. Here, a novel non-planar g-CN monolayer that could be synthesized the supramolecular self-assembly strategy was identified using DFT calculations. The cohesive energy, phonon spectrum, BOMD, and mechanical stability criteria confirm the stability of the g-CN monolayer.
View Article and Find Full Text PDFWater Res
December 2024
Department of Civil and Environmental Engineering, University of California, Berkeley, CA, 94720, United States. Electronic address:
Military bases and airports are often contaminated by per- and polyfluoroalkyl substances (PFAS) due to the repeated use of aqueous film forming foams (AFFFs) from decades of training exercises, equipment testing, and extinguishing of fuel- and solvent-based fires. Pump-and-treat systems combined with sorption processes are common ex situ remediation strategies; however, they can be expensive and may require decades of operation, particularly at sites where long-term diffusion and desorption of contaminants are the primary release processes. Alternatively, in situ chemical oxidation is an effective remediation strategy in which oxidants (e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!