A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Interaction of graphene with Auclusters: a first-principles study. | LitMetric

Interaction of graphene with Auclusters: a first-principles study.

J Phys Condens Matter

Semiconductor Physics Laboratory, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium.

Published: August 2022

The interaction between Au(= 1-6) clusters and graphene is studied using first-principles simulations, based on density functional theory. The computed binding energy between Auand graphene depends on the number of atoms in the cluster and lies between -0.6 eV and -1.7 eV, suggesting (weak) chemisorption of the clusters on graphene, rather than physisorption. Overall, the electronic properties, spin-orbit interaction and spin texture, as well as the transport properties of graphene strongly depend on the precise size of the Auclusters. Doping of graphene is predicted for clusters with an odd number of Au atoms, due to overlap between Auand carbonstates close to the Fermi level. On the other hand, there is no charge transfer between even size Au clusters and graphene, but a gap is formed at the Dirac cone, due to the breaking of the pseudo spin inversion symmetry of graphene's lattice. The adsorbed Auclusters induce spin-orbit interactions as well as spin and pseudo spin interactions in graphene, as indicated by the splitting of the electronic band structure. A hedgehog spin texture is also predicted for adsorbed clusters with an even number of Au atoms. Ballistic transport simulations are performed to study the influence of the adsorbed clusters on graphene's electronic transport properties. The influence of the cluster on the electron transmission across the structure depends on the mixing of the valence orbitals in the transport energy window. In the specific case of the Au/graphene system, the adsorbed clusters reduce the transmission and the conductance of graphene. The Auclusters act as 'scattering centers' for charge carriers, in agreement with recent experimental studies.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/ac829eDOI Listing

Publication Analysis

Top Keywords

clusters graphene
12
number atoms
12
adsorbed clusters
12
graphene auclusters
8
graphene
8
spin texture
8
transport properties
8
pseudo spin
8
clusters
7
spin
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!