In an attempt to increase the discrimination capacity (DC) and reduce the adventitious match probability, a 6-dye multiplex Y-chromosomal short tandem repeat (Y-STR) panel named Y34plex was constructed that combined 25 Y-chromosomal markers (DYS456, DYS627, DYS390, DYS570, DYS635, DYS385a/b, DYS448, DYS437, DYS533, DYS449, DYS481, DYS392, DYS391, DYS389I, DYS460, YGATAH4, DYS438, DYS389II, DYS19, DYS458, DYF387S1a/b, DYS439, DYS393, DYS576, and DYS518) in widely used commercial kits, with nine highly polymorphic Y-STR loci (DYS557, DYS527a/b, DYS593, DYS444, DYS596, DYS643, DYS447, DYS549, and DYS645). The Y34plex is a promising type system to distinguish both unrelated and related male individuals due to the incorporation of rapidly mutated Y-STR loci. A validation study of the Y34plex was performed and followed the guidelines of the Scientific Working Group on DNA analysis methods. Results show that full Y-STR profiles were obtained from male/female DNA mixtures with 125 pg of male DNA in the presence of 50 ng of female DNA. The ability to tolerate polymerase chain reaction inhibitors commonly contained in forensic casework samples demonstrated the applicability and robustness of the Y34plex. Compared with the Yfiler Plus kit, the novel panel showed an increased power of discrimination in Chinese Wuxi Han population (n = 434). The overall haplotype diversity of the Y34plex was 0.999606, whereas DC value was 0.956221, which is suitable for use on forensic paternal investigation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/elps.202100313 | DOI Listing |
Int J Legal Med
January 2025
Bioinformatics and Evolutionary Biology Laboratory, Department of Genetics, Federal University of Pernambuco, Av. Professor Moraes Rego, Recife, PE, 50670-901, Brazil.
Genetic markers of the Y chromosome are powerful tools for investigating paternal ancestry and are widely used in population and forensic genetics. However, in order to obtain statistics with a higher degree of certainty using these markers, it is necessary to obtain haplotypic frequencies from a representative database, as well as knowing the diversity and structure of the population. The aim of this study was to investigate the genetic diversity of a sample of 1114 unrelated men from three states in the Northeast of Brazil: Paraíba, Pernambuco and Ceará, through the analysis of 23 Y-STRs and to contribute to the expansion of the Brazilian database on these markers.
View Article and Find Full Text PDFInt J Legal Med
January 2025
Institute of Forensic and Anthropological Science, Seoul National University Medical Research Center, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
Inferring the ancestral origin of DNA evidence recovered from crime scenes is crucial in forensic investigations, especially in the absence of a direct suspect match. Ancestry informative markers (AIMs) have been widely researched and commercially developed into panels targeting multiple continental regions. However, existing forensic ancestry inference panels typically group East Asian individuals into a homogenous category without further differentiation.
View Article and Find Full Text PDFInt J Legal Med
November 2024
Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, Korytkova 2, Ljubljana, 1000, Slovenia.
Identification of human remains is a challenge in forensic genetics without relatives or personal items available. In Slovenia, a Konfin II mass grave from the Second World War (WWII) was found, containing skeletal remains of 65 victims. The archival documents detailing victims' information describe 45 persons of which 33 could be considered Germanic and 12 Slavic.
View Article and Find Full Text PDFForensic Sci Int Genet
July 2024
DNA Laboratory of Forensic Science Center, Shenyang Public Security Bureau, Shenyang, Liaoning 110002, PR China. Electronic address:
The Precision ID NGS System from Thermo Fisher Scientific is a mainstream next-generation sequencing (NGS) platform used in forensic laboratories to detect almost all commonly used forensic markers, except for Y-chromosomal short tandem repeats (Y-STRs). This study aimed to: 1) develop a Y-STR panel compatible with the automatic workflow of the NGS system using Ion AmpliSeq Technology, 2) evaluate the panel performance following the SWGDAM guidelines, and 3) explore the possibility of using a combination workflow to detect autosomal STRs and Y-STRs (AY-STR NGS workflow). The GrandFiler Y-STR Panel was successfully designed using the 'separating' and 'merging' strategies, including 102 Y-STRs and Amelogenin with an average amplicon length of 133 bp.
View Article and Find Full Text PDFForensic Sci Int Genet
July 2024
MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433, China; Institute of Archaeological Science, Fudan University, Shanghai 200433, China; MOE Laboratory for National Development and Intelligent Governance, Fudan University, Shanghai 200433, China. Electronic address:
Y-chromosomal short tandem repeat polymorphisms (Y-STRs) and Y-chromosomal single nucleotide polymorphisms (Y-SNPs) are valuable genetic markers used in paternal lineage identification and population genetics. Currently, there is a lack of an effective panel that integrates Y-STRs and Y-SNPs for studying paternal lineages, particularly in East Asian populations. Hence, we developed a novel Y-chromosomal targeted panel called YARN (Y-chromosome Ancestry and Region Network) based on multiplex PCR and a single-end 400 massive parallel sequencing (MPS) strategy, consisting of 44 patrilineage Y-STRs and 260 evolutionary Y-SNPs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!