CO-bound forms of nitrogenase are N-reduction inhibited and likely intermediates in Fischer-Tropsch chemistry. Visible-light photolysis at 7 K was used to interrogate all three known CO-related EPR-active forms as exhibited by the α-H195Q variant of nitrogenase MoFe protein. The hi(5)-CO EPR signal converted to the hi-CO EPR signal, which reverted at 10 K. FT-IR monitoring revealed an exquisitely light-sensitive "Hi-2" species with bands at 1932 and 1866 cm that yielded "Hi-1" with bands at 1969 and 1692 cm, which reverted to "Hi-2". The similarities of photochemical behavior and recombination kinetics showed, for the first time, that hi-CO EPR and "Hi-1" IR signals arise from one chemical species. hi(5)-CO EPR and "Hi-2" IR signals are from a second species, and lo-CO EPR and "Lo-2" IR signals, formed after prolonged illumination, are from a third species. Comparing FT-IR data with CO-inhibited MoFe-protein crystal structures allowed assignment of CO-bonding geometries in these species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.2c00818 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
TU Dortmund: Technische Universitat Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn Str.6, 44227, Dortmund, GERMANY.
This study introduces a novel class of carbon-centered diradicals: a monosubstituted C-atom stabilized by a phosphine. The diradical Ph3P→C was photochemically generated from a diazophosphorus ylide precursor (Ph3PCN2) and characterized by EPR and isotope-sensitive ENDOR spectroscopy at low temperatures. Ph3P→C features an axial zero-field splitting parameter D = 0.
View Article and Find Full Text PDFACS Cent Sci
January 2025
Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.
The design of metalloproteins allows us to better understand metal complexation in proteins and the resulting function. In this study, we incorporated a Cu-binding site into a natural protein domain, the 58 amino acid c-Crk-SH3, to create a miniaturized superoxide dismutase model, termed SO1. The resulting low complexity metalloprotein was characterized for structure and function by circular dichroism and UV spectroscopy as well as EPR spectroscopy and X-ray crystallography.
View Article and Find Full Text PDFSmall
January 2025
Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, Hubei, 430078, P. R. China.
Hydrogen peroxide (HO) production through photocatalytic O reduction reaction (ORR) is a mild and cost-efficient alternative to the anthraquinone oxidation strategy. Of note, singlet state oxygen (O) plays a crucial role in ORR. Herein, a hollow TiO@TpPa (TOTP) S-scheme heterojunction by the Schiff base reactions involving 1,3,5-triformylphloroglucinol (Tp) and paraphenylenediamine (Pa) for efficient photocatalytic HO production in deionized water has been developed.
View Article and Find Full Text PDFNanoscale
January 2025
Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares and Departamento de Química Orgánica Universidade de Santiago de Compostela Santiago de Compostela, Spain.
Poly(phenylacetylene)s (PPAs) bearing -substituted anilide pendant groups are sensitive to the presence of oxidizing metal ions such as Cu, Hg, Fe, Au or Ce due to a redox reaction between the anilide-PPA and the metal ion. Using a library of six different PPAs containing diverse chiral pendant groups connected to the PPA backbone through the N (anilide) or C (benzamide) atoms of an amide group used as a linker, it was found that anilide-PPAs are sensitive to oxidizing metal ions. In these polymers, and through a redox reaction, a radical species is delocalized along the polyene backbone, resulting in a color change of the solution from yellow to blue.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
College of Environmental and Safety Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China; Shenyang Key Laboratory of Chemical Pollution Control, Shenyang University of Chemical Technology, Shenyang 110142, China. Electronic address:
Here, a quenching strategy was developed to create oxygen vacancies in Cu doped α-MnO. The evolutions of oxygen vacancies were directly followed by means of XRD refinement, EPR and XPS. In combination with DFT calculations and detailed characterizations, evidence is captured that oxygen vacancies not only act as direct sites for the adsorption and activation of gaseous oxygen and toluene, but also accelerate the consumption and replenishment cycle of lattice oxygen species by weakening the strength of metal-oxygen bonds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!