Oxidative stress causes cellular damage, including DNA mutations, protein dysfunction, and loss of membrane integrity. Here, we discovered that a TrmB (transcription regulator of operon) family protein (Pfam PF01978) composed of a single winged-helix DNA binding domain (InterPro IPR002831) can function as thiol-based transcriptional regulator of oxidative stress response. Using the archaeon Haloferax volcanii as a model system, we demonstrate that the TrmB-like OxsR is important for recovery of cells from hypochlorite stress. OxsR is shown to bind specific regions of genomic DNA, particularly during hypochlorite stress. OxsR-bound intergenic regions were found proximal to oxidative stress operons, including genes associated with thiol relay and low molecular weight thiol biosynthesis. Further analysis of a subset of these sites revealed OxsR to function during hypochlorite stress as a transcriptional activator and repressor. OxsR was shown to require a conserved cysteine (C24) for function and to use a CG-rich motif upstream of conserved BRE/TATA box promoter elements for transcriptional activation. Protein modeling suggested the C24 is located at a homodimer interface formed by antiparallel α helices, and that oxidation of this cysteine would result in the formation of an intersubunit disulfide bond. This covalent linkage may promote stabilization of an OxsR homodimer with the enhanced DNA binding properties observed in the presence of hypochlorite stress. The phylogenetic distribution TrmB family proteins, like OxsR, that have a single winged-helix DNA binding domain and conserved cysteine residue suggests this type of redox signaling mechanism is widespread in Archaea. TrmB-like proteins, while not yet associated with redox stress, are found in bacteria and widespread in archaea. Here, we expand annotation of a large group of TrmB-like single winged-helix DNA binding domain proteins from diverse archaea to function as thiol-based transcriptional regulators of oxidative stress response. Using Haloferax volcanii as a model, we reveal that the TrmB-like OxsR functions during hypochlorite stress as a transcriptional activator and repressor of an extensive gene coexpression network associated with thiol relay and other related activities. A conserved cysteine residue of OxsR serves as the thiol-based sensor for this function and likely forms an intersubunit disulfide bond during hypochlorite stress that stabilizes a homodimeric configuration with enhanced DNA binding properties. A CG-rich DNA motif in the promoter region of a subset of sites identified to be OxsR-bound is required for regulation; however, not all sites have this motif, suggesting added complexity to the regulatory network.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9426492PMC
http://dx.doi.org/10.1128/mbio.00633-22DOI Listing

Publication Analysis

Top Keywords

hypochlorite stress
24
oxidative stress
20
dna binding
20
stress
12
stress response
12
single winged-helix
12
winged-helix dna
12
binding domain
12
conserved cysteine
12
trmb family
8

Similar Publications

Rational Development of a Lipid Droplets and Hypochlorous Acid In-Sequence Responsive Fluorescent Probe for Accurate Imaging of Atherosclerotic Plaques.

Anal Chem

December 2024

Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China.

To answer the call for effective and timely intervention in cardiovascular diseases (CVDs), the development of fluorescent probes that can precisely identify atherosclerotic plaques, the root cause of various fatal CVDs, is highly desirable but remains a great challenge. Herein, by integrating bis(trifluoromethyl)benzyl and phenothiazine into the coumarin matrix, a robust fluorescent probe, NOR1, has been developed. NOR1 responds sequentially to lipid droplets (LDs) and HClO via fluorescence turn-on and ratiometric readouts, respectively, with a fast response rate (within 70 s for LDs and 80 s for HClO), excellent sensitivity (detection limit: 0.

View Article and Find Full Text PDF

Drug-induced liver injury (DILI) is a crucial factor that poses a significant threat to human health. DILI process leads to the changes of reactive oxygen species and reactive nitrogen species content in cells, which leads to oxidative and nitrosative stress in cells. However, the high reactivity of hypochlorous acid (HOCl) and peroxynitrite (ONOO⁻), combined with a lack of in situ imaging techniques, has hindered a detailed understanding of their roles in DILI.

View Article and Find Full Text PDF

Effects of Cross-Resistance of Induced by Sodium Hypochlorite to Environmental Stress.

Indian J Microbiol

December 2024

College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, 210023 China.

To investigate the effects of repeated sodium hypochlorite stress on the resistance of (. ) LWCC1051. LWCC1051 was exposed to Trypticase Soy Broth (TSB) containing sodium hypochlorite concentrations of 9 mmol/L, 10 mmol/L, and 11 mmol/L.

View Article and Find Full Text PDF

Influence of carboxyl content on the rheological properties and printability of oxidized starch for 3D printing applications.

Int J Biol Macromol

December 2024

School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China. Electronic address:

With the rapid development of 3D printing technology, the development of starch gels based on 3D printing with excellent printing properties has attracted great attention. This study successfully prepared four types of oxidized starch (OMS) with varying carboxyl group contents (0.203 %, 0.

View Article and Find Full Text PDF

Metabolites profile, DPPH and ABTS scavenging and myoglobin protection ratio of aqueous infusion and methanolic extracts of Mexican Lippia alba.

Food Chem

November 2024

Doctorado en Sustentabilidad, Universidad Autónoma de Occidente, Unidad Regional Guasave, Av. Universidad S/N, Fraccionamiento Villa Universidad, C.P, 81048 Guasave, Sinaloa, Mexico; Departamento de Salud-Licenciatura en Ciencias Biomédicas, Universidad Autónoma de Occidente, Unidad Regional Guasave, Av. Universidad S/N, Fraccionamiento Villa Universidad, C.P, 81048 Guasave, Sinaloa, Mexico. Electronic address:

Lippia alba is a medicinal plant widely used by the inhabitants of northwest Mexico to relieve gastrointestinal and inflammatory problems; however, the phytochemical profile and bioactive potential of their polar fraction have been poorly studied. In this study phytochemical screening showed qualitatively the presence of phenolic compounds, tannins, and triterpenes in L. alba aqueous infusion and stem, flower, and leaves methanolic extracts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!