Synthetic and modified natural derivatives are reported as potential bioactive compounds and are being used therapeutically against various diseases in a widespread manner nowadays. Cancerous cells exhibit high levels of reactive oxygen species (ROS) internally, and thus successfully manage to sustain themselves and proliferate via antioxidative mechanisms that maintain a redox balance. On this note, various antioxidants are applied as anticancer compounds, which strategically affects the ongoing oncogenic stress management system in both a pro‑ and antioxidative manner, resulting in cancer restriction, as well as sustaining cell proliferation via antioxidative mechanisms that promote cancer progression. Alike non‑viral cancers, viral cancers exhibit varying levels of ROS during different stages of cancer progression. Hence, successful stress balance should be addressed, depending on the cancer cell stress response during the therapeutic management. The application of antioxidants is crucial and needs to be carefully designed in such cases; the respective underlying mechanisms are less understood. The role of antioxidants controlling the varied levels of stress response at different stages of Kaposi's sarcoma‑associated herpes virus malignancy have not been fully reported. Therefore, the present study aimed to analyze the activity of certain antioxidants in KSHV‑infected oncogenic cells. For this purpose, two naturally derived flavonoid‑based antioxidants (theaflavin and novel curcumin derivatives) were selected and tested in different KSHV‑infected cell lines. The findings presented herein demonstrate that these compounds can successfully induce the death of different KSHV‑positive cells and can restrict the growth of KSHV‑infected cell lines restricting viral reactivation by counteracting the oncogenic stress management system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9333903PMC
http://dx.doi.org/10.3892/ijmm.2022.5173DOI Listing

Publication Analysis

Top Keywords

oncogenic stress
12
stress management
12
management system
12
antioxidative mechanisms
8
cancer progression
8
stress response
8
kshv‑infected cell
8
cell lines
8
stress
6
cancer
5

Similar Publications

Unfolded protein response during the progression of colorectal carcinogenesis.

Acta Cir Bras

January 2025

Universidade Federal de Mato Grosso do Sul - Postgraduate Program in Health and Development in the Midwest Region - Campo Grande (MS) - Brazil.

Purpose: To evaluate the molecular evolution of endoplasmic reticulum (ER) stress during colorectal cancer carcinogenesis.

Methods: Fifty-six hairless mice were divided into two groups: control (no intervention); and carcinogenesis (treated with two doses of azoxymethane at 10 mg/kg during the third and the fourth week and dextran sodium sulfate at 2.5% for seven days in the second, fifth, and eighth week).

View Article and Find Full Text PDF

Ovarian cancer (OC) is a malignant gynecological cancer with an extremely poor prognosis. Stress granules (SGs) are non-membrane organelles that respond to stressors; however, the correlation between SG-related genes and the prognosis of OC remains unclear. This systematic analysis aimed to determine the expression levels of SG-related genes between high- and low-risk groups of patients with OC and to explore the prognostic value of these genes.

View Article and Find Full Text PDF

KRAS is a potent oncogenic driver which results in downstream hyperactivation of MAPK signaling, while simultaneously increasing replication stress (RS) and accumulation of DNA damage. KRASG12C mutations are common and targetable alterations. Therapeutic inhibition of KRASG12C and eventual resistance to these inhibitors are also known to drive RS and DNA damage through adaptive mechanisms that maintain addiction to high MAPK signaling.

View Article and Find Full Text PDF

Introduction: The mechanism of remimazolam, a benzodiazepine that activates γ-aminobutyric acid a (GABAa) receptors, in cerebral ischemia/reperfusion (I/R) injury is not well understood. Therefore, we explored whether remimazolam activates protein kinase B (AKT)/glycogen synthase kinase-3β (GSK-3β)/nuclear factor erythroid 2-related factor 2 (NRF2) to attenuate brain I/R injury in transcerebral I/R-injured rats and transoxygenic glucose deprivation/reperfusion (OGD/R)-injured SY5Y cells.

Material And Methods: Remimazolam was added at the beginning of cell and rat reperfusion, and the PI3K/AKT inhibitor LY294002 was added to inhibit the AKT/GSK-3β/NRF2 pathway 24 h before cellular OGD/R treatment and 30 min before rat brain I/R treatment.

View Article and Find Full Text PDF

Background: Duchenne muscular dystrophy (DMD) is a prevalent, fatal degenerative muscle disease with no effective treatments. Mdx mouse model of DMD exhibits impaired muscle performance, oxidative stress, and dysfunctional autophagy. Although antioxidant treatments may improve the mdx phenotype, the precise molecular mechanisms remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!