Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The catalytic conversion of carbon dioxide and 1,3-butadiene into unsaturated lactone monomers provides an efficient route for converting sustainable carbon feedstocks into novel macromolecules. The chemical reactivity of this monomer is reviewed in order to highlight the many viable mechanistic pathways. Polymerization strategies, monomer alterations, and post-polymerization modifications are covered. The polymerization methods include radical, coordination, conjugate addition, ring-opening, olefin metathesis, and thiol-ene chemistries. Materials derived from these processes possess a wide range of function including responsiveness, degradability, adhesion, recyclability, and self-assembly. These aspects along with the advances in polymer chemistry that make them possible are discussed, along with a perspective on the future directions of the field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/marc.202200348 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!