A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Complex carotid artery segmentation in multi-contrast MR sequences by improved optimal surface graph cuts based on flow line learning. | LitMetric

Carotid atherosclerosis is one of the leading causes of cardiovascular disease with high mortality. Multi-contrast MRI can identify atherosclerotic plaque components with high sensitivity and specificity. Accurate segmentation of the diseased carotid artery from MR images is very essential to quantitatively evaluate the state of atherosclerosis. However, due to the complex morphology of atherosclerosis plaques and the lack of well-annotated data, the segmentation of lumen and wall is very challenging. Different from popular deep learning methods, in this paper, we propose an integration segmentation framework by introducing a lightweight prediction model and improved optimal surface graph cuts (OSG), which adopts a simplified flow line sampling and post-reconstructing method to reduce the cost of graph construction. Moreover, a flexibly adaptive smoothing penalty is presented for maintaining the shape of diseased carotid surface. For the experiments, we have collected an MR image dataset from patients with carotid atherosclerosis and evaluated our method by cross-validation. It can reach 89.68%/80.29% of dice coefficients and 0.2480 mm/0.3396 mm of average surface distances on the lumen/wall segmentation, respectively. The experimental results show that our method can generate precise and reliable segmentation of both lumen and wall of diseased carotid artery with a quite small training cost.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11517-022-02622-zDOI Listing

Publication Analysis

Top Keywords

carotid artery
12
diseased carotid
12
improved optimal
8
optimal surface
8
surface graph
8
graph cuts
8
carotid atherosclerosis
8
segmentation lumen
8
lumen wall
8
segmentation
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!