AI Article Synopsis

  • Two invasive Asian earthworm species have established themselves in North American forests, causing substantial ecological damage, which may be partly due to their unique genetic and reproductive traits.
  • A study analyzed 216 and 196 individuals of these species from multiple Vermont locations, revealing that while the worms were mainly hermaphroditic, many lacked male reproductive structures, leading to clonal reproduction.
  • Despite the dominance of clonal reproduction, genetic diversity was observed, with numerous genotypes at different sites, suggesting that these earthworms may occasionally reproduce sexually, contributing to their adaptability and spread.

Article Abstract

The invasive Asian earthworms, and , have been successful in entering North American forests in recent decades, with significant damage to both soils and above-ground environments. This success could be driven in part by a polyploid genetic system and parthenogenetic reproduction, often suggested as benefits for invasive species. Therefore, we assessed the genetic population structure, genetic diversity, and reproductive system of both species using morphological traits and panels of microsatellite markers. A total of 216 and 196 from six sites in Vermont USA were analyzed. Although all worms were morphologically hermaphroditic, all the lacked the male pore (the structure allowing pass of sperm between individuals), and only 19% of the possessed the male pore. All earthworms were triploid (scored for three alleles for at least 1 locus, and usually several), and was a mix of triploid and diploid individuals. Notable was the high proportion (80%) of earthworms that were diploid at one site. There was clearly clonal reproduction, with identical seven- locus genotypes observed for earthworms from each site, with as many as 45 individuals with the identical genotype at one site. However, the earthworms were also genetically diverse, with 14 genotypes observed for and 54 for , and with many singleton genotypes (a single individual). Most genotypes (71% for and 92% for ) were found at a single site. The greatest number of genotypes was found at a commercial nursery where fully 23/26 earthworms were singleton genotypes. As expected for the pattern of private clone alleles at sites, several measures of geographic genetic differentiation were positive, and as expected for triploid systems, an AMOVA analysis showed high within-individual genetic diversity. The paradox of clear clonal reproduction, but with a great number of genotypes for each species, and the mix of triploid and diploid individuals could be explained if the worms have been sexually reproductive, with the switch to the uniparental system only recently (or even if sexual reproduction is episodic). Last, a large number of microsatellite loci were recovered for each species and there sequence and suggested PCR primers are provided for free use by other researchers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9288164PMC
http://dx.doi.org/10.7717/peerj.13622DOI Listing

Publication Analysis

Top Keywords

genetic population
8
population structure
8
reproductive system
8
invasive asian
8
asian earthworms
8
genetic diversity
8
male pore
8
mix triploid
8
triploid diploid
8
diploid individuals
8

Similar Publications

Indian Himalayan Region (IHR) supports a plethora of biodiversity with a unique assemblage of many charismatic and endemic species. We assessed the genetic diversity, demographic history, and habitat suitability of blue sheep (Pseudois nayaur) in the IHR through the analysis of the mitochondrial DNA (mtDNA) control region (CR) and Cytochrome b gene, and 14 ecological predictor variables. We observed high genetic divergence and designated them into two genetic lineage groups, i.

View Article and Find Full Text PDF

Purpose: This survey aimed to assess the public's knowledge and opinions on oocyte donation (OD) among a large, unselected cohort of young Belgian women, and to explore aspects that could be enhanced to promote future OD programs.

Methods: We conducted a quantitative, epidemiological, cross-sectional web-based survey from February 2023 to April 2023. A private questionnaire was distributed to young women (21-30 years) living in Belgium via a digital link.

View Article and Find Full Text PDF

A complete set of monosomic alien addition lines of Radish-Brassica oleracea exhibiting extensive variations was generated and well characterized for their chromosome behaviors and phenotypic characteristics. Monosomic alien addition lines (MAALs) are developed through interspecific hybridization, where an alien chromosome from a relative species is introduced into the genome of the recipient plant, serving as valuable genetic resources. In this study, an allotetraploid Raphanobrassica (RRCC, 2n = 36) was created from the interspecific hybridization between radish (Raphanus sativus, RR, 2n = 18) and Brassica oleracea (CC, 2n = 18).

View Article and Find Full Text PDF

Objective: This study was undertaken to describe incidence and distribution of seizures, etiologies, and epilepsy syndromes in the general child and youth population, using the current International League Against Epilepsy (ILAE) classifications.

Methods: The study platform is the Norwegian Mother, Father, and Child Cohort Study (MoBa). Epilepsy cases were identified through registry linkages facilitated by Norway's universal health care system and mandatory reporting to the Norwegian Patient Registry.

View Article and Find Full Text PDF

GDBr: genomic signature interpretation tool for DNA double-strand break repair mechanisms.

Nucleic Acids Res

January 2025

Department of Convergent Bioscience and Informatics, College of Bioscience and Biotechnology, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea.

Large genetic variants can be generated via homologous recombination (HR), such as polymerase theta-mediated end joining (TMEJ) or single-strand annealing (SSA). Given that these HR-based mechanisms leave specific genomic signatures, we developed GDBr, a genomic signature interpretation tool for DNA double-strand break repair mechanisms using high-quality genome assemblies. We applied GDBr to a draft human pangenome reference.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!