Lower oceanic crust formed by in situ melt crystallisation revealed by seismic layering.

Nat Geosci

Deep Earth Imaging Future Science Platform, The Commonwealth Scientific and Industrial Research Organisation (CSIRO), Kensington 6151, Australia.

Published: July 2022

Oceanic crust forms at mid-ocean spreading centres through a combination of magmatic and tectonic processes, with the magmatic processes creating two distinct layers: the upper and the lower crust. While the upper crust is known to form from lava flows and basaltic dikes based on geophysical and drilling results, the formation of the gabbroic lower crust is still debated. Here we perform a full waveform inversion of wide-angle seismic data from relatively young (7-12-million-year-old) crust formed at the slow spreading Mid-Atlantic Ridge. The seismic velocity model reveals alternating, 400-500 m thick, high and low velocity layers with ±200 m/s velocity variations, below ~2 km from the oceanic basement. The uppermost low-velocity layer is consistent with hydrothermal alteration, defining the base of extensive hydrothermal circulation near the ridge axis. The underlying layering supports that the lower crust is formed through the intrusion of melt as sills at different depths, that cool and crystallise in situ. The layering extends up to 5-15 km distance along the seismic profile, covering 300,000-800,000 years, suggesting that this form of lower crustal accretion is a stable process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7613063PMC
http://dx.doi.org/10.1038/s41561-022-00963-wDOI Listing

Publication Analysis

Top Keywords

crust formed
12
lower crust
12
oceanic crust
8
crust
7
lower
5
lower oceanic
4
formed situ
4
situ melt
4
melt crystallisation
4
crystallisation revealed
4

Similar Publications

Background: Despite extensive studies of the Mesozoic-Cenozoic magmatic history of Svalbard, little has been done on the Paleozoic magmatism due to fewer available outcrops.

Methods: 2D seismic reflection data were used to study magmatic intrusions in the subsurface of eastern Svalbard.

Results: This work presents seismic evidence for west-dipping, Middle Devonian-Mississippian sills in eastern Spitsbergen, Svalbard.

View Article and Find Full Text PDF

Sensing of hazardous gases has an important role in ensuring safety in a variety of industries as well as environments. Mainly produced by the combustion of fossil fuels and other organic matter, ethanol is a dangerous gas that endangers human health and the environment. Stability and sensing sensitivity are major considerations when designing gas sensors.

View Article and Find Full Text PDF

Absorbable Meek skin graft material transplantation: A preliminary experimental study.

Burns

January 2025

Jiangsu Tech-Bio-Med Medical Equipment Co.,Ltd., Changzhou, Jiangsu 213000, China.

Background: Wound closure is the core issue in treating patients with extensive burns. Allogeneic grafts can serve as a suitable temporary substitute in third-degree burns, and the Meek technique has provided encouraging outcomes in recent decades. However, whether allografts and the Meek technique could be used simultaneously so as to leverage the strengths of both has not been extensively examined.

View Article and Find Full Text PDF

Rare earth elements (REEs) are a critical global focus due to their increasing use, raising concerns about their environmental distribution and human exposure, both vital to food safety and human health. Surface soil (0-30 cm) and corresponding rice grain samples (n = 85) were collected from paddy fields in Taiwan. This study investigated the total REE contents in soil through aqua regia digestion, as well as their labile forms extracted using 0.

View Article and Find Full Text PDF

The cratonic crust contains abundant mineral deposits of metals such as gold, copper and rare earths and is underlain by a thick mantle lithosphere rich in the volatiles carbon, sulfur and water. Although volatiles are known to be key components in metallogenesis, how and where they are distributed in the cratonic lithosphere mantle and their role in the initial enrichment of metals have not been sufficiently explored. Here we compile sulfur and copper contents of global cratonic peridotites, identifying sulfide-rich and copper-rich continental roots at depths of 160-190 km at cratonic margins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!