Objectives: polysaccharide (ASP) is a traditional herbal medicine accompanied by antitumor potential. This study aims to explore the therapeutic potential of ASP on glioma, as well as the underlying mechanisms involving microRNA-373-3p (miR-373-3p) and the TGF-/Smad4 signaling pathway.
Methods: U251 cells (a human glioma cell line) were treated with different concentrations of ASP. miR-373-3p was silenced in U251 cells by the transfection of the miR-373-3p inhibitor. Cell viability and apoptosis were measured by CCK-8 assay and flow cytometry, respectively. Cell migration and invasion were detected by wound healing and transwell assays, respectively. The miR-373-3p expression was measured by RT-qPCR. The protein expressions of TGF- and Smad4 were evaluated by both western blotting and immunofluorescence.
Results: ASP inhibited the viability, migration, and invasion, and enhanced the apoptosis of U251 cells in a dose-dependent manner. ASP increased miR-373-3p expression and decreased TGF- and Smad4 expressions in U251 cells. Silencing of miR-373-3p weakened the effects of ASP on inhibiting cell viability, migration, and invasion, as well as promoting cell apoptosis. In addition, deleting miR-373-3p weakened the inhibiting effects of ASP on the TGF-/Smad4 pathway in U251 cells.
Conclusions: ASP suppresses the malignant progression of glioma via regulating the miR-373-3p-mediated TGF-/Smad4 pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9288290 | PMC |
http://dx.doi.org/10.1155/2022/7469774 | DOI Listing |
Cells
January 2025
Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida Jacksonville College of Medicine, 653-1 West 8th Street, Jacksonville, FL 32209, USA.
Thyroid dysfunction is associated with a number of neuropsychiatric manifestations. Cognitive decline is a common feature of hypothyroidism and clinical or subclinical hyperthyroidism. In addition, there is a significant association between thyroid hormone (TH) levels and the degree of cognitive impairment in Parkinson's disease (PD).
View Article and Find Full Text PDFProteomes
December 2024
UMR6252 CIMAP, Team Applications in Radiobiology with Accelerated Ions, CEA-CNRS-ENSICAEN, Université de Caen Normandie, 14000 Caen, France.
Glioblastoma (GBM) is a devastating malignant brain tumor with a poor prognosis. GBM is associated with radioresistance. Post-translational modifications (PTMs) such as protein phosphorylation can play an important role in the cellular response to radiation.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Cerebrovascular Disease, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, PR China.
Gliomas are the most common primary tumors of the nervous system, which is generally treated using adjuvant chemotherapy following surgical resection. However, patient survival time is still short, and there is currently no successful treatment for highly malignant gliomas. Bullatine A (BLA) is a diterpenoid alkaloid of the genus Aconitum which antirheumatic and anti-inflammatory pharmacological properties.
View Article and Find Full Text PDFBMC Res Notes
January 2025
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA.
Objective: Primary tumors of the brain and a large percent of malignant brain tumors are gliomas. Gliomas comprise high-grade gliomas like glioblastoma multiforme (GBMs), many of which have mutation in the tumor suppressor p53 gene and low-grade gliomas (LGGs). LGGs can progress to GBMs due to various factors.
View Article and Find Full Text PDFEur J Med Chem
January 2025
School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China. Electronic address:
Temozolomide, a widely used alkylating agent for glioblastoma treatment, faces significant challenges due to the development of resistance, which severely impacts patient survival. This underscores the urgent need for novel strategies to overcome this barrier. Focal adhesion kinase (FAK), an intracellular non-receptor tyrosine kinase, is highly expressed in glioblastoma cells and has been identified as a promising therapeutic target for anti-glioblastoma drug development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!